Skip to content

Latest commit

 

History

History
38 lines (24 loc) · 2.74 KB

Linear_ODE_limit_behaviour.md

File metadata and controls

38 lines (24 loc) · 2.74 KB

Limit behaviour of solutions of linear ODEs

General theory (reminder)

Consider $\dot x=Ax$.

  • If $Av=λv$, then $x(t)=e^{λt}v$ is a solution of $\dot x=Ax$.
  • If $A$ is diagonalizable, then any solution is a linear combination of $e^{λ_kt}v_k$: $x(t)=\sum_{k=1}^nc_ke^{λ_kt}v_k$.

Limit behaviour

What happens to a generic solution $x(t)$ of $\dot x=Ax$ as $t→∞$? Here “generic” means that we can ignore finitely many lines on the plane (or hyperplanes in the space).

Diagonalizable systems

If $A$ is diagonalizable, then $x(t)=c₁e^{λ₁t}v₁+c₂e^{λ₂t}v₂$. The limit behaviour depends on the order of $λ₁$, $λ₂$, and $0$ on the real line. We assume $λ₁≤λ₂$, otherwise we swap the indices $1$ and $2$. We also exclude the cases corresponding to degenerate matrices (i.e., we assume that $λ₁λ₂≠0$).

Name Inequalities Limit behaviour of a generic orbit Genericity assumption Otherwise
Saddle point $λ₁<0<λ₂$ $x(t)≈c₂e^{λ₂t}v₂→∞$ $c₂≠0$ $x(t)=c_1e^{λ_1t}v_1→0$
Stable node $λ₁<λ₂<0$ $x(t)≈c₂e^{λ₂t}v₂→0$ $c₂≠0$ $x(t)=c_1e^{λ_1t}v_1→0$
Unstable node $0<λ₁<λ₂$ $x(t)≈c₂e^{λ₂t}v₂→∞$ $c₂≠0$ $x(t)=c_1e^{λ_1t}v_1→∞$ unless $x(t)=0$
Stable dicritical node $λ₁=λ₂<0$ $x(t)=e^{λ₁t}x(0)→0$ - -
Unstable dicritical node $0<λ₁=λ₂$ $x(t)=e^{λ₁t}x(0)→∞$ $x(0)≠0$ $x(t)=0$

Complex eigenvalues

If $A$ has complex eigenvalues $λ=a+bi$ and $\bar λ=a-bi$, then the solutions are given by $x(t)=e^{at}\left[(c₁\cos(bt)+c₂\sin(bt))v+(c₂\cos(bt)-c₁\sin(bt))w\right]$, where $v+iw$ is an eigenvector corresponding to $λ=a+bi$. The limit behaviour of a generic orbit depends on the sign of $a$.

Name (In)equalities Limit behaviour of a generic orbit Genericity assumption Otherwise
Stable focus $a<0$ $x(t)→0$, $C_1e^{at}\le|x(t)|\le C_2e^{at}$ - -
Unstable focus $a>0$ $x(t)→∞$, $C_1e^{at}\le|x(t)|\le C_2e^{at}$ $x(0)≠0$ $x(t)=0$
Center $a=0$ $x(t)$ is periodic - -