You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If $Av=λv$, then $x(t)=e^{λt}v$ is a solution of $\dot x=Ax$.
If $A$ is diagonalizable, then any solution is a linear combination of $e^{λ_kt}v_k$: $x(t)=\sum_{k=1}^nc_ke^{λ_kt}v_k$.
Limit behaviour
What happens to a generic solution $x(t)$ of $\dot x=Ax$ as $t→∞$? Here “generic” means that we can ignore finitely many lines on the plane (or hyperplanes in the space).
Diagonalizable systems
If $A$ is diagonalizable, then $x(t)=c₁e^{λ₁t}v₁+c₂e^{λ₂t}v₂$. The limit behaviour depends on the order of $λ₁$, $λ₂$, and $0$ on the real line.
We assume $λ₁≤λ₂$, otherwise we swap the indices $1$ and $2$. We also exclude the cases corresponding to degenerate matrices (i.e., we assume that $λ₁λ₂≠0$).
Name
Inequalities
Limit behaviour of a generic orbit
Genericity assumption
Otherwise
Saddle point
$λ₁<0<λ₂$
$x(t)≈c₂e^{λ₂t}v₂→∞$
$c₂≠0$
$x(t)=c_1e^{λ_1t}v_1→0$
Stable node
$λ₁<λ₂<0$
$x(t)≈c₂e^{λ₂t}v₂→0$
$c₂≠0$
$x(t)=c_1e^{λ_1t}v_1→0$
Unstable node
$0<λ₁<λ₂$
$x(t)≈c₂e^{λ₂t}v₂→∞$
$c₂≠0$
$x(t)=c_1e^{λ_1t}v_1→∞$ unless $x(t)=0$
Stable dicritical node
$λ₁=λ₂<0$
$x(t)=e^{λ₁t}x(0)→0$
-
-
Unstable dicritical node
$0<λ₁=λ₂$
$x(t)=e^{λ₁t}x(0)→∞$
$x(0)≠0$
$x(t)=0$
Complex eigenvalues
If $A$ has complex eigenvalues $λ=a+bi$ and $\bar λ=a-bi$, then the solutions are given by $x(t)=e^{at}\left[(c₁\cos(bt)+c₂\sin(bt))v+(c₂\cos(bt)-c₁\sin(bt))w\right]$, where $v+iw$ is an eigenvector corresponding to $λ=a+bi$. The limit behaviour of a generic orbit depends on the sign of $a$.