diff --git a/requirements.txt b/requirements.txt index 0ef3748e..d34ce394 100644 --- a/requirements.txt +++ b/requirements.txt @@ -11,4 +11,7 @@ scipy pillow xarray tqdm -pydata_sphinx_theme \ No newline at end of file +pydata_sphinx_theme +# the following pin is due to a security update to numexpr: https://github.com/pydata/numexpr/issues/442 +# consider removing once this is resolved +numexpr<2.8.5 diff --git a/src/PyHyperScattering/SST1RSoXSDB.py b/src/PyHyperScattering/SST1RSoXSDB.py index 6960fa94..4f319af7 100644 --- a/src/PyHyperScattering/SST1RSoXSDB.py +++ b/src/PyHyperScattering/SST1RSoXSDB.py @@ -13,6 +13,7 @@ import asyncio import time import copy + try: os.environ["TILED_SITE_PROFILES"] = "/nsls2/software/etc/tiled/profiles" from tiled.client import from_profile @@ -22,7 +23,8 @@ from databroker.queries import RawMongo, Key, FullText, Contains, Regex except Exception: print( - "Imports failed. Are you running on a machine with proper libraries for databroker, tiled, etc.?" + "Imports failed. Are you running on a machine with proper libraries for databroker," + " tiled, etc.?" ) import copy @@ -39,19 +41,19 @@ class SST1RSoXSDB: md_loading_is_quick = True pix_size_1 = 0.06 pix_size_2 = 0.06 - + md_lookup = { - 'sam_x':'RSoXS Sample Outboard-Inboard', - 'sam_y':'RSoXS Sample Up-Down', - 'sam_z':'RSoXS Sample Downstream-Upstream', - 'sam_th':'RSoXS Sample Rotation', - 'polarization':'en_polarization_setpoint', - 'energy':'en_energy_setpoint', - 'exposure':'RSoXS Shutter Opening Time (ms)' #md['detector']+'_cam_acquire_time' - } + "sam_x": "RSoXS Sample Outboard-Inboard", + "sam_y": "RSoXS Sample Up-Down", + "sam_z": "RSoXS Sample Downstream-Upstream", + "sam_th": "RSoXS Sample Rotation", + "polarization": "en_polarization_setpoint", + "energy": "en_energy_setpoint", + "exposure": "RSoXS Shutter Opening Time (ms)", # md['detector']+'_cam_acquire_time' + } md_secondary_lookup = { - 'energy':'en_monoen_setpoint', - } + "energy": "en_monoen_setpoint", + } def __init__( self, @@ -76,10 +78,11 @@ def __init__( use_precise_positions (bool): if False, rounds sam_x and sam_y to 1 digit. If True, keeps default rounding (4 digits). Needed for spiral scans to work with readback positions. use_chunked_loading (bool): if True, returns Dask backed arrays for further Dask processing. if false, behaves in conventional Numpy-backed way """ - + if corr_mode == None: warnings.warn( - "Correction mode was not set, not performing *any* intensity corrections. Are you sure this is " + "Correction mode was not set, not performing *any* intensity corrections. Are you" + " sure this is " + "right? Set corr_mode to 'none' to suppress this warning.", stacklevel=2, ) @@ -94,9 +97,15 @@ def __init__( else: self.c = catalog if use_chunked_loading: - raise SyntaxError('use_chunked_loading is incompatible with externally supplied catalog. when creating the catalog, pass structure_clients = "dask" as a kwarg.') + raise SyntaxError( + "use_chunked_loading is incompatible with externally supplied catalog. when" + ' creating the catalog, pass structure_clients = "dask" as a kwarg.' + ) if len(catalog_kwargs) != 0: - raise SyntaxError('catalog_kwargs is incompatible with externally supplied catalog. pass those kwargs to whoever gave you the catalog you passed in.') + raise SyntaxError( + "catalog_kwargs is incompatible with externally supplied catalog. pass those" + " kwargs to whoever gave you the catalog you passed in." + ) self.dark_subtract = dark_subtract self.dark_pedestal = dark_pedestal self.exposure_offset = exposure_offset @@ -131,7 +140,22 @@ def runSearch(self, **kwargs): q = RawMongo(**kwargs) return self.c.search(q) - def summarize_run( + def summarize_run(self, *args, **kwargs): + """Deprecated function for searching the bluesky catalog for a run. Replaced by searchCatalog() + + To be removed in PyHyperScattering 1.0.0+. + """ + warnings.warn( + ( + "summarize_run has been renamed to searchCatalog. This will stop working in" + " PyHyperScattering 1.0.0 and later." + ), + DeprecationWarning, + stacklevel=2, + ) + return self.searchCatalog(*args, **kwargs) + + def searchCatalog( self, outputType: str = "default", cycle: str = None, @@ -157,13 +181,13 @@ def summarize_run( underlying metadata scheme. Ex1: All of the carbon,fluorine,or oxygen scans for a single sample series in the most recent cycle: - bsCatalogReduced4 = db_loader.summarize_run(sample="bBP_", institution="NIST", cycle = "2022-2", plan="carbon|fluorine|oxygen") + bsCatalogReduced4 = db_loader.searchCatalog(sample="bBP_", institution="NIST", cycle = "2022-2", plan="carbon|fluorine|oxygen") Ex2: Just all of the scan Ids for a particular sample: - bsCatalogReduced4 = db_loader.summarize_run(sample="BBP_PFP09A", outputType='scans') + bsCatalogReduced4 = db_loader.searchCatalog(sample="BBP_PFP09A", outputType='scans') Ex3: Complex Search with custom parameters - bsCatalogReduced3 = db_loader.summarize_run(['angle', '-1.6', 'numeric'], outputType='all',sample="BBP_", cycle = "2022-2", + bsCatalogReduced3 = db_loader.searchCatalog(['angle', '-1.6', 'numeric'], outputType='all',sample="BBP_", cycle = "2022-2", institution="NIST",plan="carbon", userOutputs = [["Exposure Multiplier", "exptime", r'catalog.start'], ["Stop Time","time",r'catalog.stop']]) @@ -198,7 +222,7 @@ def summarize_run( Ex2: passing in grazing=[0,'numeric'] would match grazing==0 Ex3: create kwargs first, then pass it into the function. kwargs = {'2weird metadata label': "Bob", 'grazing': 0, 'angle':-1.6} - db_loader.summarize_run(sample="BBP_PFP09A", outputType='scans', **kwargs) + db_loader.searchCatalog(sample="BBP_PFP09A", outputType='scans', **kwargs) userOutputs (list of lists, optional): Additional metadata to be added to output can be specified as a list of lists. Each sub-list specifies a metadata field as a 3 element list of format: [Output column title (str), Metadata label (str), Metadata Source (raw str)], @@ -239,7 +263,9 @@ def summarize_run( userSearchList.append([userLabel, value[0], value[1]]) else: # bad user input raise ValueError( - f"Error parsing a keyword search term, check the format. Skipped argument: {value} ") + "Error parsing a keyword search term, check the format. Skipped argument:" + f" {value} " + ) # combine the lists of lists fullSearchList = defaultSearchDetails + userSearchList @@ -251,11 +277,11 @@ def summarize_run( # Iterate through search terms sequentially, reducing the size of the catalog based on successful matches reducedCatalog = bsCatalog - for _,searchSeries in tqdm(df_SearchDet.iterrows(),total = df_SearchDet.shape[0], desc = "Running catalog search..."): - + for _, searchSeries in tqdm( + df_SearchDet.iterrows(), total=df_SearchDet.shape[0], desc="Running catalog search..." + ): # Skip arguments with value None, and quits if the catalog was reduced to 0 elements if (searchSeries[1] is not None) and (len(reducedCatalog) > 0): - # For numeric entries, do Key equality if "numeric" in str(searchSeries[2]): reducedCatalog = reducedCatalog.search( @@ -278,25 +304,23 @@ def summarize_run( regexString = reg_prefix + str(searchSeries[1]) + reg_postfix # Search/reduce the catalog - reducedCatalog = reducedCatalog.search( - Regex(searchSeries[0], regexString) - ) + reducedCatalog = reducedCatalog.search(Regex(searchSeries[0], regexString)) # If a match fails, notify the user which search parameter yielded 0 results if len(reducedCatalog) == 0: warnString = ( f"Catalog reduced to zero when attempting to match {searchSeries}\n" - +f"If this is a user-provided search parameter, check spelling/syntax." + + f"If this is a user-provided search parameter, check spelling/syntax." ) warnings.warn(warnString, stacklevel=2) return pd.DataFrame() ### Part 2: Build and return output dataframe - if (outputType == "scans"): + if outputType == "scans": # Branch 2.1, if only scan IDs needed, build and return a 1-column dataframe scan_ids = [] - for scanEntry in tqdm(reducedCatalog.values(), desc = "Building scan list"): + for scanEntry in tqdm(reducedCatalog.values(), desc="Building scan list"): scan_ids.append(scanEntry.start["scan_id"]) return pd.DataFrame(scan_ids, columns=["Scan ID"]) @@ -317,7 +341,7 @@ def summarize_run( ["sample_id", "sample_id", r"catalog.start", "default"], ["bar_spot", "bar_spot", r"catalog.start", "ext_msmt"], ["plan", "plan_name", r"catalog.start", "default"], - ["detector", "RSoXS_Main_DET", r"catalog.start", "default"], + ["detector", "RSoXS_Main_DET", r"catalog.start", "default"], ["polarization", "pol", r'catalog.start["plan_args"]', "default"], ["sample_rotation", "angle", r"catalog.start", "ext_msmt"], ["exit_status", "exit_status", r"catalog.stop", "default"], @@ -344,7 +368,13 @@ def summarize_run( activeOutputValues.append(userOutEntry) activeOutputLabels.append(userOutEntry[0]) else: # bad user input - raise ValueError(f"Error parsing user-provided output request {userOutEntry}, check the format.", stacklevel=2) + raise ValueError( + ( + f"Error parsing user-provided output request {userOutEntry}, check the" + " format." + ), + stacklevel=2, + ) # Add any user-provided search terms for userSearchEntry in userSearchList: @@ -361,17 +391,17 @@ def summarize_run( # Build output dataframe as a list of lists outputList = [] - # Outer loop: Catalog entries - for scanEntry in tqdm(reducedCatalog.values(),desc = "Retrieving results..."): + # Outer loop: Catalog entries + for scanEntry in tqdm(reducedCatalog.values(), desc="Retrieving results..."): singleScanOutput = [] # Pull the start and stop docs once - + currentCatalogStart = scanEntry.start currentCatalogStop = scanEntry.stop - + currentScanID = currentCatalogStart["scan_id"] - + # Inner loop: append output values for outputEntry in activeOutputValues: outputVariableName = outputEntry[0] @@ -379,8 +409,10 @@ def summarize_run( metaDataSource = outputEntry[2] try: # Add the metadata value depending on where it is located - if metaDataLabel == 'time': - singleScanOutput.append(datetime.datetime.fromtimestamp(currentCatalogStart['time'])) + if metaDataLabel == "time": + singleScanOutput.append( + datetime.datetime.fromtimestamp(currentCatalogStart["time"]) + ) # see Zen of Python # 9,8 for justification elif metaDataSource == r"catalog.start": singleScanOutput.append(currentCatalogStart[metaDataLabel]) @@ -397,27 +429,38 @@ def summarize_run( else: if debugWarnings: warnings.warn( - f'Failed to locate metadata for {outputVariableName} in scan {currentScanID}.', - stacklevel=2) + ( + f"Failed to locate metadata for {outputVariableName} in" + f" scan {currentScanID}." + ), + stacklevel=2, + ) missesDuringLoad = True except (KeyError, TypeError): if debugWarnings: warnings.warn( - f'Failed to locate metadata for {outputVariableName} in scan {currentScanID}.', - stacklevel=2) + ( + f"Failed to locate metadata for {outputVariableName} in scan" + f" {currentScanID}." + ), + stacklevel=2, + ) missesDuringLoad = True singleScanOutput.append("N/A") # Append to the filled output list for this entry to the list of lists outputList.append(singleScanOutput) - - + # Convert to dataframe for export if missesDuringLoad: - warnings.warn( - f'One or more missing field(s) during this load were replaced with "N/A". Re-run with debugWarnings=True to see details.', - stacklevel=2) + warnings.warn( + ( + f'One or more missing field(s) during this load were replaced with "N/A". ' + f" Re-run with debugWarnings=True to see details." + ), + stacklevel=2, + ) return pd.DataFrame(outputList, columns=activeOutputLabels) def background(f): @@ -481,10 +524,10 @@ def loadSeries( scans.append(loaded) label_val = loaded.__getattr__(meta_dim) try: - if len(label_val)>1 and type(label_val) != str: + if len(label_val) > 1 and type(label_val) != str: label_val = label_val.mean() except TypeError: - pass # assume if there is no len, then this is a single value and everything is fine + pass # assume if there is no len, then this is a single value and everything is fine label_vals.append(label_val) assert len(axes) == axes.count( axes[0] @@ -537,72 +580,77 @@ def loadRun( ) md = self.loadMd(run) - + monitors = self.loadMonitors(run) - + if dims is None: - if ('NEXAFS' or 'nexafs') in md['start']['plan_name']: - raise NotImplementedError(f"Scan {md['start']['scan_id']} is a {md['start']['plan_name']} NEXAFS scan. NEXAFS loading is not yet supported.") # handled case change in "NEXAFS" - elif ('full' in md['start']['plan_name'] or 'short' in md['start']['plan_name'] or 'custom_rsoxs_scan' in md['start']['plan_name']) and dims is None: - dims = ['energy'] - elif 'spiralsearch' in md['start']['plan_name'] and dims is None: - dims = ['sam_x','sam_y'] - elif 'count' in md['start']['plan_name'] and dims is None: - dims = ['epoch'] + if ("NEXAFS" or "nexafs") in md["start"]["plan_name"]: + raise NotImplementedError( + f"Scan {md['start']['scan_id']} is a {md['start']['plan_name']} NEXAFS scan. " + " NEXAFS loading is not yet supported." + ) # handled case change in "NEXAFS" + elif ( + "full" in md["start"]["plan_name"] + or "short" in md["start"]["plan_name"] + or "custom_rsoxs_scan" in md["start"]["plan_name"] + ) and dims is None: + dims = ["energy"] + elif "spiralsearch" in md["start"]["plan_name"] and dims is None: + dims = ["sam_x", "sam_y"] + elif "count" in md["start"]["plan_name"] and dims is None: + dims = ["epoch"] else: axes_to_include = [] rsd_cutoff = 0.005 # begin with a list of the things that are primary streams - axis_list = list(run['primary']['data'].keys()) + axis_list = list(run["primary"]["data"].keys()) # next, knock out anything that has 'image', 'fullframe' in it - these aren't axes - axis_list = [x for x in axis_list if 'image' not in x] - axis_list = [x for x in axis_list if 'fullframe' not in x] - axis_list = [x for x in axis_list if 'stats' not in x] - axis_list = [x for x in axis_list if 'saturated' not in x] - axis_list = [x for x in axis_list if 'under_exposed' not in x] + axis_list = [x for x in axis_list if "image" not in x] + axis_list = [x for x in axis_list if "fullframe" not in x] + axis_list = [x for x in axis_list if "stats" not in x] + axis_list = [x for x in axis_list if "saturated" not in x] + axis_list = [x for x in axis_list if "under_exposed" not in x] # knock out any known names of scalar counters - axis_list = [x for x in axis_list if 'Beamstop' not in x] - axis_list = [x for x in axis_list if 'Current' not in x] - - - + axis_list = [x for x in axis_list if "Beamstop" not in x] + axis_list = [x for x in axis_list if "Current" not in x] + # now, clean up duplicates. - axis_list = [x for x in axis_list if 'setpoint' not in x] + axis_list = [x for x in axis_list if "setpoint" not in x] # now, figure out what's actually moving. we use a relative standard deviation to do this. # arbitrary cutoff of 0.5% motion = it moved intentionally. for axis in axis_list: std = np.std(run["primary"]["data"][axis]) mean = np.mean(run["primary"]["data"][axis]) - rsd = std/mean - + rsd = std / mean + if rsd > rsd_cutoff: axes_to_include.append(axis) # next, construct the reverse lookup table - best mapping we can make of key to pyhyper word # we start with the lookup table used by loadMd() - reverse_lut = {v: k for k, v in self.md_lookup.items()} - reverse_lut_secondary = {v: k for k, v in self.md_secondary_lookup.items()} + reverse_lut = {v: k for k, v in self.md_lookup.items()} + reverse_lut_secondary = {v: k for k, v in self.md_secondary_lookup.items()} reverse_lut.update(reverse_lut_secondary) # here, we broaden the table to make a value that default sources from '_setpoint' actually match on either # the bare value or the readback value. reverse_lut_adds = {} for k in reverse_lut.keys(): - if 'setpoint' in k: - reverse_lut_adds[k.replace('_setpoint','')] = reverse_lut[k] - reverse_lut_adds[k.replace('_setpoint','_readback')] = reverse_lut[k] + if "setpoint" in k: + reverse_lut_adds[k.replace("_setpoint", "")] = reverse_lut[k] + reverse_lut_adds[k.replace("_setpoint", "_readback")] = reverse_lut[k] reverse_lut.update(reverse_lut_adds) - + pyhyper_axes_to_use = [] for x in axes_to_include: try: pyhyper_axes_to_use.append(reverse_lut[x]) except KeyError: pyhyper_axes_to_use.append(x) - dims = pyhyper_axes_to_use - - ''' + dims = pyhyper_axes_to_use + + """ elif dims == None: # use the dim tols to define the dimensions # dims = [] @@ -626,8 +674,7 @@ def loadRun( dims[i] = 'en_energy' if len(dims) == 0: raise NotImplementedError('You have not entered any dimensions; please enter at least one, or use None rather than an empty list') - ''' - + """ data = run["primary"]["data"][md["detector"] + "_image"] if ( @@ -656,9 +703,7 @@ def loadRun( def subtract_dark(img, pedestal=100, darks=None): return img + pedestal - darks[int(img.dark_id.values)] - data = data.groupby("time").map( - subtract_dark, darks=dark, pedestal=self.dark_pedestal - ) + data = data.groupby("time").map(subtract_dark, darks=dark, pedestal=self.dark_pedestal) dims_to_join = [] dim_names_to_join = [] @@ -710,7 +755,10 @@ def subtract_dark(img, pedestal=100, darks=None): except Exception as e: warnings.warn( - "Monitor streams loaded successfully, but could not be correlated to images. Check monitor stream for issues, probable metadata change.", + ( + "Monitor streams loaded successfully, but could not be correlated to images. " + " Check monitor stream for issues, probable metadata change." + ), stacklevel=2, ) retxr.attrs.update(md) @@ -802,7 +850,7 @@ def loadMonitors( # At this stage monitors has dimension time and all streams as data variables # the time dimension inherited all time values from all streams # the data variables (Mesh current, sample current etc.) are all sparse, with lots of nans - + # if there are no monitors, return an empty xarray Dataset if monitors is None: return xr.Dataset() @@ -818,15 +866,9 @@ def loadMonitors( try: primary_time = entry.primary.data["time"].values except AttributeError: - if ( - type(entry.primary.data["time"]) - == tiled.client.array.DaskArrayClient - ): + if type(entry.primary.data["time"]) == tiled.client.array.DaskArrayClient: primary_time = entry.primary.data["time"].read().compute() - elif ( - type(entry.primary.data["time"]) - == tiled.client.array.ArrayClient - ): + elif type(entry.primary.data["time"]) == tiled.client.array.ArrayClient: primary_time = entry.primary.data["time"].read() # If we want to exclude values for when the shutter was opening or closing @@ -834,14 +876,10 @@ def loadMonitors( if useShutterThinning: # Create new data variable to hold shutter toggle values that are thinned # Shutter Toggle stream is 1 when open (or opening) and 0 when closed (or closing) - monitors["RSoXS Shutter Toggle_thinned"] = monitors[ - "RSoXS Shutter Toggle" - ] + monitors["RSoXS Shutter Toggle_thinned"] = monitors["RSoXS Shutter Toggle"] # Perform thinning to remove edge cases where shutter may be partially open or closed - monitors[ - "RSoXS Shutter Toggle_thinned" - ].values = scipy.ndimage.binary_erosion( + monitors["RSoXS Shutter Toggle_thinned"].values = scipy.ndimage.binary_erosion( monitors["RSoXS Shutter Toggle"].values, iterations=n_thinning_iters, border_value=0, @@ -849,9 +887,9 @@ def loadMonitors( # Filter monitors to only include timepoints where shutter was open (as determined by thinning) # Drop any remaining missing values along the time axis - monitors = monitors.where( - monitors["RSoXS Shutter Toggle_thinned"] > 0 - ).dropna("time") + monitors = monitors.where(monitors["RSoXS Shutter Toggle_thinned"] > 0).dropna( + "time" + ) # Bin the indexes in 'time' based on the intervales between timepoints in 'primary_time' and evaluate their mean # Then rename the 'time_bin' dimension that results to 'time' @@ -872,7 +910,11 @@ def loadMonitors( except Exception as e: # raise e # for testing warnings.warn( - "Error while time-integrating monitors onto images. Usually, this indicates a problem with the monitors, this is a critical error if doing normalization otherwise fine to ignore.", + ( + "Error while time-integrating monitors onto images. Usually, this" + " indicates a problem with the monitors, this is a critical error if doing" + " normalization otherwise fine to ignore." + ), stacklevel=2, ) return monitors @@ -910,9 +952,7 @@ def loadMd(self, run): meas_time < datetime.datetime(2022, 7, 7) ): # these params determined by Camille from Igor - md[ - "beamcenter_x" - ] = 498 # not the best estimate; I didn't have great data + md["beamcenter_x"] = 498 # not the best estimate; I didn't have great data md["beamcenter_y"] = 498 md["sdd"] = 512.12 # GUESS; SOMEONE SHOULD CONFIRM WITH A BCP MAYBE?? else: @@ -943,7 +983,10 @@ def loadMd(self, run): else: md["rsoxs_config"] = "unknown" warnings.warn( - f'RSoXS_Config is neither SAXS or WAXS. Looks to be {start["RSoXS_Config"]}. Might want to check that out.', + ( + f'RSoXS_Config is neither SAXS or WAXS. Looks to be {start["RSoXS_Config"]}. ' + " Might want to check that out." + ), stacklevel=2, ) @@ -952,19 +995,20 @@ def loadMd(self, run): elif md["rsoxs_config"] == "waxs": md["detector"] = "Wide Angle CCD Detector" else: - warnings.warn( - f"Cannot auto-hint detector type without RSoXS config.", stacklevel=2 - ) + warnings.warn(f"Cannot auto-hint detector type without RSoXS config.", stacklevel=2) # items coming from baseline baseline = run["baseline"]["data"] # items coming from primary try: - primary = run['primary']['data'] - except (KeyError,HTTPStatusError): - raise Exception('No primary stream --> probably you caught run before image was written. Try again.') - + primary = run["primary"]["data"] + except (KeyError, HTTPStatusError): + raise Exception( + "No primary stream --> probably you caught run before image was written. Try" + " again." + ) + md_lookup = copy.deepcopy(self.md_lookup) md_secondary_lookup = copy.deepcopy(self.md_secondary_lookup) @@ -988,7 +1032,11 @@ def loadMd(self, run): md[phs] = blval.mean().round(4) if blval.var() > 0: warnings.warn( - f"While loading {rsoxs} to infill metadata entry for {phs}, found beginning and end values unequal: {baseline[rsoxs]}. It is possible something is messed up.", + ( + f"While loading {rsoxs} to infill metadata entry for {phs}, found" + f" beginning and end values unequal: {baseline[rsoxs]}. It is" + " possible something is messed up." + ), stacklevel=2, ) except (KeyError, HTTPStatusError): @@ -1005,12 +1053,20 @@ def loadMd(self, run): md[phs] = blval.mean().round(4) if blval.var() > 0: warnings.warn( - f"While loading {md_secondary_lookup[phs]} to infill metadata entry for {phs}, found beginning and end values unequal: {baseline[rsoxs]}. It is possible something is messed up.", + ( + f"While loading {md_secondary_lookup[phs]} to infill" + f" metadata entry for {phs}, found beginning and end" + f" values unequal: {baseline[rsoxs]}. It is possible" + " something is messed up." + ), stacklevel=2, ) except (KeyError, HTTPStatusError): warnings.warn( - f"Could not find {rsoxs} in either baseline or primary. Needed to infill value {phs}. Setting to None.", + ( + f"Could not find {rsoxs} in either baseline or primary. " + f" Needed to infill value {phs}. Setting to None." + ), stacklevel=2, ) md[phs] = None @@ -1101,11 +1157,7 @@ def loadSingleImage(self, filepath, coords=None, return_q=False, **kwargs): # img = (img-darkimg+self.dark_pedestal)/corr if return_q: qpx = ( - 2 - * np.pi - * 60e-6 - / (headerdict["sdd"] / 1000) - / (headerdict["wavelength"] * 1e10) + 2 * np.pi * 60e-6 / (headerdict["sdd"] / 1000) / (headerdict["wavelength"] * 1e10) ) qx = (np.arange(1, img.size[0] + 1) - headerdict["beamcenter_x"]) * qpx qy = (np.arange(1, img.size[1] + 1) - headerdict["beamcenter_y"]) * qpx