forked from zhuowei/HvDecompile
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhv.c
993 lines (935 loc) · 32.6 KB
/
hv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
// Decompiled by hand (based-ish on a Ghidra decompile) from Hypervisor.framework on macOS 12.0b1
// 06/09/22: updated for macOS 12.5.1
// 15/09/22: added offsets for macOS 11.6.5
#include <assert.h>
#include <pthread.h>
#include <stdio.h>
#include <dispatch/dispatch.h>
#include <mach/vm_types.h>
#include "hv_kernel_structs.h"
#include "hv_vm_types.h"
static_assert(sizeof(hv_vcpu_exit_t) == 0x20, "hv_vcpu_exit");
#define HV_CALL_VM_GET_CAPABILITIES 0
#define HV_CALL_VM_CREATE 1
#define HV_CALL_VM_DESTROY 2
#define HV_CALL_VM_MAP 3
#define HV_CALL_VM_UNMAP 4
#define HV_CALL_VM_PROTECT 5
#define HV_CALL_VCPU_CREATE 6
#define HV_CALL_VCPU_DESTROY 7
#define HV_CALL_VCPU_SYSREGS_SYNC 8
#define HV_CALL_VCPU_RUN 9
#define HV_CALL_VCPU_RUN_CANCEL 10
#define HV_CALL_VCPU_SET_ADDRESS_SPACE 11
#define HV_CALL_VM_ADDRESS_SPACE_CREATE 12
#define HV_CALL_VM_INVALIDATE_TLB 13
#ifdef USE_EXTERNAL_HV_TRAP
uint64_t hv_trap(unsigned int hv_call, void* hv_arg);
#else
__attribute__((naked)) uint64_t hv_trap(unsigned int hv_call, void* hv_arg) {
asm volatile("mov x16, #-0x5\n"
"svc 0x80\n"
"ret\n");
}
#endif
static uint64_t hv_trap_wrap(unsigned int hv_call, void* hv_arg) {
uint64_t err = hv_trap(hv_call, hv_arg);
printf("hv_trap %u %p returned %llx\n", hv_call, hv_arg, err);
return err;
}
//#define hv_trap hv_trap_wrap
static hv_return_t _hv_get_capabilities(hv_capabilities_t** c) {
static dispatch_once_t caps_once;
static hv_capabilities_t caps;
static hv_return_t status;
dispatch_once(&caps_once, ^{
status = hv_trap(HV_CALL_VM_GET_CAPABILITIES, &caps);
});
*c = ∩︀
return status;
}
// this is placed at offset 8 of the cpu regs, so I'm labelling the offsets relative to those
struct hv_vcpu_data_feature_regs {
uint64_t aa64dfr0_el1; // 0x8
uint64_t aa64dfr1_el1; // 0x10
uint64_t aa64isar0_el1; // 0x18
uint64_t aa64isar1_el1; // 0x20
uint64_t aa64mmfr0_el1; // 0x28
uint64_t aa64mmfr1_el1; // 0x30
uint64_t aa64mmfr2_el1; // 0x38
uint64_t aa64pfr0_el1; // 0x40
uint64_t aa64pfr1_el1; // 0x48
uint64_t ctr_el0; // 0x50
uint64_t dczid_el0; // 0x58
uint64_t clidr_el1; // 0x60
uint64_t ccsidr_el1_inst[8]; // 0x68
uint64_t ccsidr_el1_data_or_unified[8]; // 0xA8
};
// TODO: define names for the flags from aarch64 documents
#define MODIFY_FLAGS_AA64DFR0_EL1(reg) ((reg) & 0xf0f0f000 | 6)
#define MODIFY_FLAGS_AA64DFR1_EL1(reg) ((reg) & 0)
#define MODIFY_FLAGS_AA64ISAR0_EL1(reg) ((reg) & 0xfffffffff0fffff0)
#define MODIFY_FLAGS_AA64ISAR1_EL1(reg) ((reg) & 0xfffffffffff)
#define MODIFY_FLAGS_AA64MMFR0_EL1(reg) ((reg) & 0xf000fff000f0 | 1)
#define MODIFY_FLAGS_AA64MMFR1_EL1(reg) ((reg) & 0xfffff0f0)
#define MODIFY_FLAGS_AA64MMFR2_EL1(reg) ((reg) & 0xf000000000000000 | (((((reg) >> 48) & 0xff) << 48) | ((((reg) >> 32) & 0xff) << 32) | (((reg) & 0xff0ff))))
#define MODIFY_FLAGS_AA64PFR0_EL1(reg) ((reg) & 0xff0f0000f0ff00ff | 0x1100)
#define MODIFY_FLAGS_AA64PFR1_EL1(reg) ((reg) & 0xf0)
#define MODIFY_FLAGS_CTR_EL0(reg) (reg)
#define MODIFY_FLAGS_DCZID_EL0(reg) (reg)
#define MODIFY_FLAGS_CLIDR_EL1(reg) (reg)
static hv_return_t _hv_vcpu_config_get_feature_regs(
struct hv_vcpu_data_feature_regs* feature_regs) {
hv_capabilities_t* caps = NULL;
hv_return_t err = _hv_get_capabilities(&caps);
if (err) {
return err;
}
feature_regs->aa64dfr0_el1 = MODIFY_FLAGS_AA64DFR0_EL1(ACCESS(caps, id_aa64dfr0_el1));
feature_regs->aa64dfr1_el1 = MODIFY_FLAGS_AA64DFR1_EL1(ACCESS(caps, id_aa64dfr1_el1));
feature_regs->aa64isar0_el1 = MODIFY_FLAGS_AA64ISAR0_EL1(ACCESS(caps, id_aa64isar0_el1));
feature_regs->aa64isar1_el1 = MODIFY_FLAGS_AA64ISAR1_EL1(ACCESS(caps, id_aa64isar1_el1));
feature_regs->aa64mmfr0_el1 = MODIFY_FLAGS_AA64MMFR0_EL1(ACCESS(caps, id_aa64mmfr0_el1));
feature_regs->aa64mmfr1_el1 = MODIFY_FLAGS_AA64MMFR1_EL1(ACCESS(caps, id_aa64mmfr1_el1));
feature_regs->aa64mmfr2_el1 = MODIFY_FLAGS_AA64MMFR2_EL1(ACCESS(caps, id_aa64mmfr2_el1));
feature_regs->aa64pfr0_el1 = MODIFY_FLAGS_AA64PFR0_EL1(ACCESS(caps, id_aa64pfr0_el1));
feature_regs->aa64pfr1_el1 = MODIFY_FLAGS_AA64PFR1_EL1(ACCESS(caps, id_aa64pfr1_el1));
feature_regs->ctr_el0 = MODIFY_FLAGS_CTR_EL0(ACCESS(caps, ctr_el0));
feature_regs->dczid_el0 = MODIFY_FLAGS_DCZID_EL0(ACCESS(caps, dczid_el0));
feature_regs->clidr_el1 = MODIFY_FLAGS_CLIDR_EL1(ACCESS(caps, clidr_el1));
if (get_xnu_version() >= HV_VERSION_XNU_21) {
static_assert(sizeof(feature_regs->ccsidr_el1_inst) == sizeof(caps->v21.ccsidr_el1_inst), "ccsidr_el1_inst size");
memcpy(feature_regs->ccsidr_el1_inst, ACCESS(caps, ccsidr_el1_inst), sizeof(feature_regs->ccsidr_el1_inst));
static_assert(sizeof(feature_regs->ccsidr_el1_data_or_unified) == sizeof(caps->v21.ccsidr_el1_data_or_unified), "ccsidr_el1_data_or_unified size");
memcpy(feature_regs->ccsidr_el1_data_or_unified, ACCESS(caps, ccsidr_el1_data_or_unified), sizeof(feature_regs->ccsidr_el1_data_or_unified));
}
return 0;
}
// type lookup hv_vm_create_t
struct hv_vm_create_kernel_args {
uint64_t min_ipa;
uint64_t ipa_size;
uint32_t granule;
uint32_t flags;
uint32_t isa;
};
static_assert(sizeof(struct hv_vm_create_kernel_args) == 0x20, "hv_vm_create_kernel_args size");
const struct hv_vm_create_kernel_args kDefaultVmCreateKernelArgs = {
.min_ipa = 0,
.ipa_size = 0,
.granule = 0,
.flags = 0,
.isa = 1,
};
struct hv_vm_config_private {
char field_0[16];
uint64_t min_ipa;
uint64_t ipa_size;
uint32_t granule;
uint32_t isa;
};
hv_return_t hv_vm_create(hv_vm_config_t config) {
struct hv_vm_create_kernel_args args = kDefaultVmCreateKernelArgs;
struct hv_vm_config_private *_config = (struct hv_vm_config_private *)config;
if (config) {
args.min_ipa = _config->min_ipa;
args.ipa_size = _config->ipa_size;
args.granule = _config->granule;
args.isa = _config->isa;
}
return hv_trap(HV_CALL_VM_CREATE, &args);
}
// type lookup hv_vm_map_item_t, although fields are renamed to match userspace args
struct hv_vm_map_kernel_args {
void* addr; // 0x0
hv_ipa_t ipa; // 0x8
size_t size; // 0x10
hv_memory_flags_t flags; // 0x18
uint64_t asid; // 0x20
};
hv_return_t hv_vm_map(void* addr, hv_ipa_t ipa, size_t size, hv_memory_flags_t flags) {
struct hv_vm_map_kernel_args args = {
.addr = addr, .ipa = ipa, .size = size, .flags = flags, .asid = 0};
return hv_trap(HV_CALL_VM_MAP, &args);
}
hv_return_t hv_vm_unmap(hv_ipa_t ipa, size_t size) {
struct hv_vm_map_kernel_args args = {
.addr = NULL, .ipa = ipa, .size = size, .flags = 0, .asid = 0};
return hv_trap(HV_CALL_VM_UNMAP, &args);
}
hv_return_t hv_vm_protect(hv_ipa_t ipa, size_t size, hv_memory_flags_t flags) {
struct hv_vm_map_kernel_args args = {
.addr = NULL, .ipa = ipa, .size = size, .flags = flags, .asid = 0};
return hv_trap(HV_CALL_VM_PROTECT, &args);
}
static pthread_mutex_t vcpus_mutex = PTHREAD_MUTEX_INITIALIZER;
struct hv_vcpu_zone {
arm_guest_rw_context_t rw;
arm_guest_ro_context_t ro;
};
static_assert(sizeof(struct hv_vcpu_zone) == 0x8000, "hv_vcpu_zone");
struct hv_vcpu_data {
struct hv_vcpu_zone* vcpu_zone; // 0x0
struct hv_vcpu_data_feature_regs feature_regs; // 0x8
uint64_t pending_interrupts; // 0xe8
hv_vcpu_exit_t exit; // 0xf0
uint32_t timer_enabled; // 0x110
uint32_t field_114; // 0x114
};
static_assert(sizeof(struct hv_vcpu_data) == 0x118, "hv_vcpu_data");
static const size_t kHvMaxVcpus = 0x40;
static struct hv_vcpu_data vcpus[kHvMaxVcpus];
struct hv_vcpu_create_kernel_args {
uint64_t id; // 0x0
struct hv_vcpu_zone* output_vcpu_zone; // 0x8
};
struct hv_vcpu_config_private {
char field_0[16];
uint64_t vmkeylo_el2;
uint64_t vmkeyhi_el2;
};
hv_return_t hv_vcpu_create(hv_vcpu_t* vcpu, hv_vcpu_exit_t** exit, hv_vcpu_config_t config) {
struct hv_vcpu_config_private *_config = (struct hv_vcpu_config_private *)config;
pthread_mutex_lock(&vcpus_mutex);
hv_vcpu_t cpuid = 0;
for (; cpuid < kHvMaxVcpus; cpuid++) {
if (!vcpus[cpuid].vcpu_zone) {
break;
}
}
if (cpuid == kHvMaxVcpus) {
pthread_mutex_unlock(&vcpus_mutex);
return HV_NO_RESOURCES;
}
struct hv_vcpu_data* vcpu_data = &vcpus[cpuid];
struct hv_vcpu_create_kernel_args args = {
.id = cpuid,
.output_vcpu_zone = 0,
};
kern_return_t err = hv_trap(HV_CALL_VCPU_CREATE, &args);
if (err) {
pthread_mutex_unlock(&vcpus_mutex);
return err;
}
printf("vcpu_zone = %p\n", args.output_vcpu_zone);
uint64_t expected_magic = get_expected_magic();
if (args.output_vcpu_zone->ro.ver != expected_magic) {
printf("Invalid magic! expected %llx, got %llx\n", expected_magic, args.output_vcpu_zone->ro.ver);
#ifndef USE_KERNEL_BYPASS_CHECKS
hv_trap(HV_CALL_VCPU_DESTROY, NULL);
pthread_mutex_unlock(&vcpus_mutex);
return HV_UNSUPPORTED;
#else
printf("yoloing\n");
#endif
}
vcpu_data->vcpu_zone = args.output_vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_data->vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_data->vcpu_zone->rw;
*vcpu = cpuid;
*exit = &vcpu_data->exit;
pthread_mutex_unlock(&vcpus_mutex);
// configure regs from HV_CALL_VM_GET_CAPABILITIES
err = _hv_vcpu_config_get_feature_regs(&vcpu_data->feature_regs);
if (err) {
hv_vcpu_destroy(cpuid);
return err;
}
if (config) {
ACCESS(rw, controls.vmkeylo_el2) = _config->vmkeylo_el2;
ACCESS(rw, controls.vmkeyhi_el2) = _config->vmkeyhi_el2;
}
// Apple traps PMCCNTR_EL0 using this proprietary register, then translates the syndrome.
// No, I don't know why Apple doesn't just use HDFGRTR_EL2 or MDCR_EL2
ACCESS(rw, controls.hacr_el2) |= 1ull << 56;
// TID3: trap the feature regs so we can handle these ourselves
ACCESS(rw, controls.hcr_el2) |= 0x40000ull;
// if ro hacr has a bit set, clear rw hcr_el2 TIDCP?!
if ((ACCESS(ro, controls.hacr_el2) >> 4 & 1) != 0) {
ACCESS(rw, controls.hcr_el2) &= ~0x100000;
}
ACCESS(rw, controls.hcr_el2) |= 0x80000;
ACCESS(rw, state_dirty) |= 0x4;
return 0;
}
hv_return_t hv_vcpu_destroy(hv_vcpu_t vcpu) {
kern_return_t err = hv_trap(HV_CALL_VCPU_DESTROY, NULL);
if (err) {
return err;
}
pthread_mutex_lock(&vcpus_mutex);
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
vcpu_data->vcpu_zone = NULL;
vcpu_data->pending_interrupts = 0;
pthread_mutex_unlock(&vcpus_mutex);
return 0;
}
static bool deliver_ordinary_exception(struct hv_vcpu_data* vcpu_data, hv_vcpu_exit_t* exit);
static void deliver_uncategorized_exception(struct hv_vcpu_data* vcpu_data);
hv_return_t hv_vcpu_run(hv_vcpu_t vcpu) {
// update registers
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
arm_guest_ro_context_t *ro = &vcpu_data->vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_data->vcpu_zone->rw;
bool injected_interrupt = false;
if (vcpu_data->pending_interrupts) {
injected_interrupt = true;
ACCESS(rw, controls.hcr_el2) |= vcpu_data->pending_interrupts;
ACCESS(rw, state_dirty) |= 0x4;
}
vcpu_data->timer_enabled = ACCESS(rw, controls.timer) & 1;
while (true) {
hv_return_t err = hv_trap(HV_CALL_VCPU_RUN, NULL);
if (err) {
return err;
}
bool print_vmexit = false;
if (print_vmexit) {
printf("exit = %d (esr = %x far = %llx hpfar = %llx)\n",
ACCESS(ro, exit.vmexit_reason), ACCESS(ro, exit.vmexit_esr),
ACCESS(ro, exit.vmexit_far), ACCESS(ro, exit.vmexit_hpfar));
}
hv_vcpu_exit_t* exit = &vcpu_data->exit;
switch (ACCESS(ro, exit.vmexit_reason)) {
case 0: {
exit->reason = HV_EXIT_REASON_CANCELED;
break;
}
case 1: // hvc call?
case 6: // memory fault?
case 8: {
if (deliver_ordinary_exception(vcpu_data, exit)) {
continue;
}
break;
}
case 3:
case 4: {
if (!vcpu_data->timer_enabled && ACCESS(rw, banked_sysregs.cntv_ctl_el0) == 5) {
exit->reason = HV_EXIT_REASON_VTIMER_ACTIVATED;
// mask vtimer
ACCESS(rw, controls.timer) |= 1ull;
} else {
exit->reason = HV_EXIT_REASON_UNKNOWN;
}
break;
}
case 2:
case 11: {
// keep going!
continue;
}
case 7:
deliver_uncategorized_exception(vcpu_data);
continue;
default: {
exit->reason = HV_EXIT_REASON_UNKNOWN;
break;
}
}
if (injected_interrupt) {
vcpu_data->pending_interrupts = 0;
ACCESS(rw, controls.hcr_el2) &= ~0xc0ull;
ACCESS(rw, state_dirty) |= 0x4;
}
return 0;
}
}
hv_return_t hv_vcpu_get_reg(hv_vcpu_t vcpu, hv_reg_t reg, uint64_t* value) {
if (reg > HV_REG_CPSR) {
return HV_BAD_ARGUMENT;
}
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
if (reg < HV_REG_FP) {
*value = ACCESS(rw, regs.x[reg]);
} else if (reg == HV_REG_FP) {
*value = ACCESS(rw, regs.fp);
} else if (reg == HV_REG_LR) {
*value = ACCESS(rw, regs.lr);
} else if (reg == HV_REG_PC) {
*value = ACCESS(rw, regs.pc);
} else if (reg == HV_REG_FPCR) {
*value = ACCESS(rw, neon.fpcr);
} else if (reg == HV_REG_FPSR) {
*value = ACCESS(rw, neon.fpsr);
} else if (reg == HV_REG_CPSR) {
*value = ACCESS(rw, regs.cpsr);
}
return 0;
}
hv_return_t hv_vcpu_set_reg(hv_vcpu_t vcpu, hv_reg_t reg, uint64_t value) {
if (reg > HV_REG_CPSR) {
return HV_BAD_ARGUMENT;
}
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
if (reg < HV_REG_FP) {
ACCESS(rw, regs.x[reg]) = value;
} else if (reg == HV_REG_FP) {
ACCESS(rw, regs.fp) = value;
} else if (reg == HV_REG_LR) {
ACCESS(rw, regs.lr) = value;
} else if (reg == HV_REG_PC) {
ACCESS(rw, regs.pc) = value;
} else if (reg == HV_REG_FPCR) {
ACCESS(rw, neon.fpcr) = value;
} else if (reg == HV_REG_FPSR) {
ACCESS(rw, neon.fpsr) = value;
} else if (reg == HV_REG_CPSR) {
ACCESS(rw, regs.cpsr) = value;
}
return 0;
}
hv_return_t hv_vcpu_get_simd_fp_reg(hv_vcpu_t vcpu, hv_simd_fp_reg_t reg,
hv_simd_fp_uchar16_t* value) {
if (reg > HV_SIMD_FP_REG_Q31) {
return HV_BAD_ARGUMENT;
}
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
*((__uint128_t*)value) = ACCESS(rw, neon.q[reg]);
return 0;
}
hv_return_t hv_vcpu_set_simd_fp_reg(hv_vcpu_t vcpu, hv_simd_fp_reg_t reg,
hv_simd_fp_uchar16_t value) {
if (reg > HV_SIMD_FP_REG_Q31) {
return HV_BAD_ARGUMENT;
}
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
ACCESS(rw, neon.q[reg]) = *((__uint128_t*)&value);
return 0;
}
static bool find_sys_reg(hv_sys_reg_t sys_reg, uint64_t* offset, uint64_t* sync_mask) {
uint64_t o = 0;
uint64_t f = 0;
if (get_xnu_version() == HV_VERSION_XNU_20) {
switch (sys_reg) {
#include "sysreg_offsets_xnu_20.h"
default:
return false;
}
} else if (get_xnu_version() == HV_VERSION_XNU_21 || get_xnu_version() == HV_VERSION_XNU_22) {
switch (sys_reg) {
#include "sysreg_offsets_xnu_21_22.h"
default:
return false;
}
} else {
return false;
}
*offset = o;
*sync_mask = f;
return true;
}
// static_assert(offsetof(arm_guest_rw_context_t, dbgregs.bp[0].bvr) == 0x450,
// "HV_SYS_REG_DBGBVR0_EL1");
hv_return_t hv_vcpu_get_sys_reg(hv_vcpu_t vcpu, hv_sys_reg_t sys_reg, uint64_t* value) {
hv_return_t err;
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
switch (sys_reg) {
case HV_SYS_REG_MIDR_EL1:
*value = ACCESS(rw, controls.vpidr_el2);
return 0;
case HV_SYS_REG_MPIDR_EL1:
*value = ACCESS(rw, controls.vmpidr_el2);
return 0;
case HV_SYS_REG_ID_AA64PFR0_EL1:
*value = vcpu_data->feature_regs.aa64pfr0_el1;
return 0;
case HV_SYS_REG_ID_AA64PFR1_EL1:
*value = vcpu_data->feature_regs.aa64pfr1_el1;
return 0;
case HV_SYS_REG_ID_AA64DFR0_EL1:
*value = vcpu_data->feature_regs.aa64dfr0_el1;
return 0;
case HV_SYS_REG_ID_AA64DFR1_EL1:
*value = vcpu_data->feature_regs.aa64dfr1_el1;
return 0;
case HV_SYS_REG_ID_AA64ISAR0_EL1:
*value = vcpu_data->feature_regs.aa64isar0_el1;
return 0;
case HV_SYS_REG_ID_AA64ISAR1_EL1:
*value = vcpu_data->feature_regs.aa64isar1_el1;
return 0;
case HV_SYS_REG_ID_AA64MMFR0_EL1:
*value = vcpu_data->feature_regs.aa64mmfr0_el1;
return 0;
case HV_SYS_REG_ID_AA64MMFR1_EL1:
*value = vcpu_data->feature_regs.aa64mmfr1_el1;
return 0;
case HV_SYS_REG_ID_AA64MMFR2_EL1:
*value = vcpu_data->feature_regs.aa64mmfr2_el1;
return 0;
default:
break;
}
// handle the special cases
uint64_t offset = 0;
uint64_t sync_mask = 0;
bool found = find_sys_reg(sys_reg, &offset, &sync_mask);
if (!found) {
printf("invalid get sys reg: %x\n", sys_reg);
return HV_BAD_ARGUMENT;
}
if ((sync_mask != 0) &&
((ACCESS(rw, state_dirty) & sync_mask) == 0 && (ACCESS(ro, state_valid) & sync_mask) == 0)) {
if ((err = hv_trap(HV_CALL_VCPU_SYSREGS_SYNC, 0)) != 0) {
return err;
}
}
*value = *(uint64_t*)((char*)rw + offset);
return 0;
}
hv_return_t hv_vcpu_set_sys_reg(hv_vcpu_t vcpu, hv_sys_reg_t sys_reg, uint64_t value) {
hv_return_t err;
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
switch (sys_reg) {
case HV_SYS_REG_MIDR_EL1: {
ACCESS(rw, controls.vpidr_el2) = value;
ACCESS(rw, state_dirty) |= 0x4;
return 0;
}
case HV_SYS_REG_MPIDR_EL1: {
ACCESS(rw, controls.vmpidr_el2) = value;
ACCESS(rw, state_dirty) |= 0x4;
return 0;
}
// the kernel doesn't set these - userspace traps and handles these
case HV_SYS_REG_ID_AA64PFR0_EL1:
vcpu_data->feature_regs.aa64pfr0_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64PFR1_EL1:
vcpu_data->feature_regs.aa64pfr1_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64DFR0_EL1:
vcpu_data->feature_regs.aa64dfr0_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64DFR1_EL1:
vcpu_data->feature_regs.aa64dfr1_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64ISAR0_EL1:
vcpu_data->feature_regs.aa64isar0_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64ISAR1_EL1:
vcpu_data->feature_regs.aa64isar1_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64MMFR0_EL1:
vcpu_data->feature_regs.aa64mmfr0_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64MMFR1_EL1:
vcpu_data->feature_regs.aa64mmfr1_el1 = value;
return 0;
case HV_SYS_REG_ID_AA64MMFR2_EL1:
vcpu_data->feature_regs.aa64mmfr2_el1 = value;
return 0;
default:
break;
}
// handle the special cases
uint64_t offset = 0;
uint64_t sync_mask = 0;
bool found = find_sys_reg(sys_reg, &offset, &sync_mask);
if (!found) {
printf("invalid set sys reg: %x\n", sys_reg);
return HV_BAD_ARGUMENT;
}
if ((sync_mask != 0) && (((ACCESS(ro, state_valid) & sync_mask) == 0))) {
if ((err = hv_trap(HV_CALL_VCPU_SYSREGS_SYNC, 0)) != 0) {
return err;
}
}
*(uint64_t*)((char*)rw + offset) = value;
if (sync_mask != 0) {
ACCESS(rw, state_dirty) |= sync_mask;
}
return 0;
}
hv_return_t hv_vcpu_get_vtimer_mask(hv_vcpu_t vcpu, bool* vtimer_is_masked) {
if (!vtimer_is_masked) {
return HV_BAD_ARGUMENT;
}
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
*vtimer_is_masked = ACCESS(rw, controls.timer) & 1;
return 0;
}
hv_return_t hv_vcpu_set_vtimer_mask(hv_vcpu_t vcpu, bool vtimer_is_masked) {
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
ACCESS(rw, controls.timer) = (ACCESS(rw, controls.timer) & ~1ull) | vtimer_is_masked;
return 0;
}
hv_return_t hv_vcpu_get_vtimer_offset(hv_vcpu_t vcpu, uint64_t* vtimer_offset) {
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
*vtimer_offset = ACCESS(rw, controls.virtual_timer_offset);
return 0;
}
hv_return_t hv_vcpu_set_vtimer_offset(hv_vcpu_t vcpu, uint64_t vtimer_offset) {
struct hv_vcpu_zone* vcpu_zone = vcpus[vcpu].vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
ACCESS(rw, controls.virtual_timer_offset) = vtimer_offset;
ACCESS(rw, state_dirty) |= 0x4;
return 0;
}
hv_return_t hv_vcpu_set_pending_interrupt(hv_vcpu_t vcpu, hv_interrupt_type_t type, bool pending) {
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
if (type == HV_INTERRUPT_TYPE_IRQ) {
// HCR_EL2 VI bit
if (pending) {
vcpu_data->pending_interrupts |= 0x80ull;
} else {
vcpu_data->pending_interrupts &= ~0x80ull;
}
return 0;
} else if (type == HV_INTERRUPT_TYPE_FIQ) {
// HCR_EL2 VF bit
if (pending) {
vcpu_data->pending_interrupts |= 0x40ull;
} else {
vcpu_data->pending_interrupts &= ~0x40ull;
}
return 0;
} else {
return HV_BAD_ARGUMENT;
}
}
hv_return_t hv_vcpus_exit(hv_vcpu_t* vcpus, uint32_t vcpu_count) {
uint64_t mask = 0;
for (int i = 0; i < vcpu_count; i++) {
hv_vcpu_t cpu = vcpus[i];
if (cpu >= kHvMaxVcpus) {
return HV_BAD_ARGUMENT;
}
mask |= (1ul << cpu);
}
return hv_trap(HV_CALL_VCPU_RUN_CANCEL, (void*)mask);
}
void sync_and_dirty_banked_state(struct hv_vcpu_zone *vcpu_zone, uint64_t state)
{
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
if (((ACCESS(ro, state_valid) & state) == 0) && hv_trap(HV_CALL_VCPU_SYSREGS_SYNC, 0) != 0) {
assert(false);
}
ACCESS(rw, state_dirty) = ACCESS(rw, state_dirty) | state;
return;
}
static bool deliver_msr_trap(struct hv_vcpu_data* vcpu_data, hv_vcpu_exit_t* exit) {
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
uint64_t esr = ACCESS(ro, exit.vmexit_esr);
uint32_t reg = (esr >> 5) & 0x1f;
uint32_t sysreg = esr & 0x3ffc1e;
if ((esr & 0x300000) == 0x200000) {
if ((ACCESS(rw, controls.mdcr_el2) >> 9 & 1) != 0) {
return false;
}
if ((esr & 1) == 0) {
switch (sysreg) {
case 0x200004:
ACCESS(rw, dbgregs.mdccint_el1) = ACCESS(rw, regs.x[reg]);
break;
case 0x240000:
ACCESS(rw, dbgregs.osdtrrx_el1) = ACCESS(rw, regs.x[reg]);
break;
case 0x20c008:
case 0x240006:
ACCESS(rw, dbgregs.osdtrtx_el1) = ACCESS(rw, regs.x[reg]);
break;
default:
return false;
}
} else {
switch (sysreg) {
case 0x200004:
ACCESS(rw, regs.x[reg]) = ACCESS(rw, dbgregs.mdccint_el1);
break;
case 0x20c008:
case 0x20c00a:
case 0x240000:
ACCESS(rw, regs.x[reg]) = ACCESS(rw, dbgregs.osdtrrx_el1);
break;
case 0x240006:
ACCESS(rw, regs.x[reg]) = ACCESS(rw, dbgregs.osdtrtx_el1);
break;
case 0x20c002:
ACCESS(rw, regs.x[reg]) = 0;
break;
default:
return false;
}
}
} else {
if ((esr & 1) == 0) {
return false;
}
switch (sysreg) {
case 0x300002:
case 0x300004:
case 0x300006:
case 0x320002:
case 0x320004:
case 0x320006:
case 0x340002:
case 0x340004:
case 0x340006:
case 0x360002:
case 0x360004:
case 0x380002:
case 0x380004:
case 0x3a0002:
case 0x3a0004:
case 0x3c0002:
case 0x3c0004:
case 0x3e0002:
ACCESS(rw, regs.x[reg]) = 0;
break;
case 0x34000e:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64mmfr2_el1;
break;
case 0x300008:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64pfr0_el1;
break;
case 0x30000a:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64dfr0_el1;
break;
case 0x30000c:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64isar0_el1;
break;
case 0x30000e:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64mmfr0_el1;
break;
case 0x320008:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64pfr1_el1;
break;
case 0x32000a:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64dfr1_el1;
break;
case 0x32000c:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64isar1_el1;
break;
case 0x32000e:
ACCESS(rw, regs.x[reg]) = vcpu_data->feature_regs.aa64mmfr1_el1;
break;
default:
return false;
}
}
ACCESS(rw, regs.pc) += 4;
return true;
}
// https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/pexpert/pexpert/arm64/VMAPPLE.h#L84
static bool deliver_pac_trap(struct hv_vcpu_data* vcpu_data) {
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
uint64_t esr = ACCESS(ro, exit.vmexit_esr);
uint32_t uVar6;
uint64_t uVar9;
if (((esr & 0xffff) != 0) ||
((ACCESS(rw, regs.x[0]) & 0xff000000) != 0xc1000000)) {
return false;
}
uVar6 = ACCESS(rw, regs.x[0]) & 0xffffff;
if (((ACCESS(ro, controls.hacr_el2) >> 4 & 1) == 0) ||
(6 < uVar6)) {
ACCESS(rw, regs.x[0]) = 0xffffffff;
return true;
}
switch(uVar6) {
default:
// VMAPPLE_PAC_SET_INITIAL_STATE
ACCESS(rw, extregs.apctl_el1) = 0x11;
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apiakeylo_el1) = 0xfeedfacefeedfacf;
ACCESS(rw, extregs.apiakeyhi_el1) = 0xfeedfacefeedfad0;
ACCESS(rw, extregs.apdakeylo_el1) = 0xfeedfacefeedfad1;
ACCESS(rw, extregs.apdakeyhi_el1) = 0xfeedfacefeedfad2;
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apibkeylo_el1) = 0xfeedfacefeedfad5;
ACCESS(rw, extregs.apibkeyhi_el1) = 0xfeedfacefeedfad6;
ACCESS(rw, extregs.apdbkeylo_el1) = 0xfeedfacefeedfad7;
ACCESS(rw, extregs.apdbkeyhi_el1) = 0xfeedfacefeedfad8;
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apgakeylo_el1) = 0xfeedfacefeedfad9;
ACCESS(rw, extregs.apgakeyhi_el1) = 0xfeedfacefeedfada;
sync_and_dirty_banked_state(vcpu_zone, 0x1000000000000000);
ACCESS(rw, extregs.kernkeylo_el1) = 0xfeedfacefeedfad3;
ACCESS(rw, extregs.kernkeyhi_el1) = 0xfeedfacefeedfad4;
break;
case 1:
// VMAPPLE_PAC_GET_DEFAULT_KEYS
ACCESS(rw, regs.x[1]) = 0xfeedfacefeedfacf;
ACCESS(rw, regs.x[0]) = 0;
ACCESS(rw, regs.x[3]) = 0xfeedfacefeedfad3;
ACCESS(rw, regs.x[2]) = 0xfeedfacefeedfad5;
ACCESS(rw, regs.x[4]) = 0xfeedfacefeedfad9;
return true;
case 2:
// VMAPPLE_PAC_SET_A_KEYS
uVar9 = ACCESS(rw, regs.x[1]);
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apiakeylo_el1) = uVar9;
ACCESS(rw, extregs.apiakeyhi_el1) = uVar9 + 1;
ACCESS(rw, extregs.apdakeylo_el1) = uVar9 + 2;
ACCESS(rw, extregs.apdakeyhi_el1) = uVar9 + 3;
break;
case 3:
// VMAPPLE_PAC_SET_B_KEYS
uVar9 = ACCESS(rw, regs.x[1]);
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apibkeylo_el1) = uVar9;
ACCESS(rw, extregs.apibkeyhi_el1) = uVar9 + 1;
ACCESS(rw, extregs.apdbkeylo_el1) = uVar9 + 2;
ACCESS(rw, extregs.apdbkeyhi_el1) = uVar9 + 3;
break;
case 4:
// VMAPPLE_PAC_SET_EL0_DIVERSIFIER
uVar9 = ACCESS(rw, regs.x[1]);
sync_and_dirty_banked_state(vcpu_zone, 0x1000000000000000);
ACCESS(rw, extregs.kernkeylo_el1) = uVar9;
ACCESS(rw, extregs.kernkeyhi_el1) = uVar9 + 1;
break;
case 5:
// VMAPPLE_PAC_SET_EL0_DIVERSIFIER_AT_EL1
uVar9 = ACCESS(rw, regs.x[2]);
sync_and_dirty_banked_state(vcpu_zone, 0x1000000000000000);
ACCESS(rw, extregs.kernkeylo_el1) = uVar9;
ACCESS(rw, extregs.kernkeyhi_el1) = uVar9 + 1;
uVar9 = ACCESS(rw, regs.x[1]);
if (uVar9 == 0) {
ACCESS(rw, extregs.apctl_el1) = ACCESS(rw, extregs.apctl_el1) & 0xfffffffffffffffd;
}
else if (uVar9 == 1) {
ACCESS(rw, extregs.apctl_el1) = ACCESS(rw, extregs.apctl_el1) | 2;
}
break;
case 6:
uVar9 = ACCESS(rw, regs.x[1]);
sync_and_dirty_banked_state(vcpu_zone, 0x2000000000000000);
ACCESS(rw, extregs.apgakeylo_el1) = uVar9;
ACCESS(rw, extregs.apgakeyhi_el1) = uVar9 + 1;
break;
}
ACCESS(rw, regs.x[0]) = 0;
return true;
}
static bool deliver_ordinary_exception(struct hv_vcpu_data* vcpu_data, hv_vcpu_exit_t* exit) {
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
uint64_t esr = ACCESS(ro, exit.vmexit_esr);
exit->reason = HV_EXIT_REASON_EXCEPTION;
exit->exception.syndrome = esr;
exit->exception.virtual_address = ACCESS(ro, exit.vmexit_far);
exit->exception.physical_address = ACCESS(ro, exit.vmexit_hpfar);
if ((esr >> 26) == 0x16) {
return deliver_pac_trap(vcpu_data);
} else if ((esr >> 26) == 0x3f) {
if (ACCESS(ro, exit.vmexit_reason) != 8) {
deliver_uncategorized_exception(vcpu_data);
return true;
}
uint64_t exit_instr = ACCESS(ro, exit.vmexit_instr);
if (((exit_instr ^ 0xffffffff) & 0x302c00) == 0) {
if ((ACCESS(ro, controls.hacr_el2) >> 4 & 1) != 0) {
deliver_uncategorized_exception(vcpu_data);
return true;
}
} else if ((exit_instr & 0x1ff0000) == 0x1c00000) {
exit->exception.syndrome = exit_instr & 0xffff | 0x5e000000;
} else {
if (((exit_instr & 0x3ffc1e) == 0x3e4000) &&
((ACCESS(ro, controls.hacr_el2) >> 4 & 1) != 0)) {
ACCESS(rw, regs.x[((exit_instr >> 5) & 0x1f)]) = 0x980200;
ACCESS(rw, regs.pc) += 4;
return true;
}
exit->exception.syndrome = exit_instr & 0x1ffffff | 0x62000000;
}
return false;
} else if ((esr >> 26) == 0x18) {
return deliver_msr_trap(vcpu_data, exit);
}
return false;
}
static void deliver_uncategorized_exception(struct hv_vcpu_data* vcpu_data) {
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
uint64_t cpsr, vbar_el1, pc;
sync_and_dirty_banked_state(vcpu_zone, 1);
ACCESS(rw, banked_sysregs.elr_el1) = ACCESS(rw, regs.pc);
ACCESS(rw, banked_sysregs.esr_el1) = 0x2000000;
ACCESS(rw, banked_sysregs.spsr_el1) = ACCESS(rw, regs.cpsr);
cpsr = ACCESS(rw, regs.cpsr);
assert((cpsr >> 4 & 1) == 0); // (m & SPSR_MODE_RW_32) == 0
vbar_el1 = ACCESS(rw, banked_sysregs.vbar_el1);
pc = vbar_el1;
if ((cpsr & 1) != 0) {
pc = vbar_el1 + 0x200;
}
if ((cpsr & 0x1f) < 4) {
pc = vbar_el1 + 0x400;
}
ACCESS(rw, regs.pc) = pc;
ACCESS(rw, regs.cpsr) = ACCESS(rw, regs.cpsr) & 0xffffffe0;
ACCESS(rw, regs.cpsr) = ACCESS(rw, regs.cpsr) | 0x3c5;
}
extern void *_os_object_alloc(const void *cls, size_t size);
hv_vm_config_t hv_vm_config_create(void) {
struct hv_vm_config_private *_config = _os_object_alloc(NULL, sizeof(struct hv_vm_config_private));
_config->min_ipa = 0;
_config->ipa_size = 0;
_config->granule = 0;
_config->isa = 1;
return (hv_vm_config_t)_config;
}
hv_return_t _hv_vm_config_set_isa(hv_vm_config_t config, uint32_t isa) {
struct hv_vm_config_private *_config = (struct hv_vm_config_private *)config;
if (config == NULL) {
return HV_BAD_ARGUMENT;
}
_config->isa = isa;
return 0;
}
hv_return_t _hv_vcpu_get_actlr(hv_vcpu_t vcpu, uint64_t* value) {
hv_return_t err;
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
const uint64_t sync_mask = 0x1;
if ((ACCESS(ro, state_valid) & sync_mask) == 0) {
if ((err = hv_trap(HV_CALL_VCPU_SYSREGS_SYNC, 0)) != 0) {
return err;
}
}
*value = ACCESS(rw, banked_sysregs.actlr_el1);
return 0;
}
hv_return_t _hv_vcpu_set_actlr(hv_vcpu_t vcpu, uint64_t value) {
hv_return_t err;
struct hv_vcpu_data* vcpu_data = &vcpus[vcpu];
struct hv_vcpu_zone* vcpu_zone = vcpu_data->vcpu_zone;
arm_guest_ro_context_t *ro = &vcpu_zone->ro;
arm_guest_rw_context_t *rw = &vcpu_zone->rw;
const uint64_t sync_mask = 0x1;
if ((ACCESS(ro, state_valid) & sync_mask) == 0) {
if ((err = hv_trap(HV_CALL_VCPU_SYSREGS_SYNC, 0)) != 0) {
return err;
}
}
ACCESS(rw, banked_sysregs.actlr_el1) = value;
ACCESS(rw, state_dirty) |= sync_mask;
return 0;
}