forked from CNNs4QSPR/cnns4qspr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.travis.yml
54 lines (46 loc) · 1.6 KB
/
.travis.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# what language
language: python
# what versions of python
python:
- "3.6"
# what branches should be evaluated
branches:
only:
- master
# commands to prepare the conda install - download the latest conda
# and install it and add to path
before_install:
- pwd
- curl -o miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
- chmod +x miniconda.sh
- ./miniconda.sh -b
- export PATH=/home/travis/miniconda3/bin:$PATH
- conda update --yes conda
- source $(conda info --root)/etc/profile.d/conda.sh
install:
- conda create --yes -n test-environment python=$TRAVIS_PYTHON_VERSION
- conda activate test-environment
# install the dependencies of the cnns4qspr repo
- conda install --yes pytorch torchvision -c pytorch
- conda install --yes -c conda-forge biopandas
- conda install --yes plotly
# go into the environment site-packages, install lie-learn
- cd $(conda info --root)/envs/test-environment/lib/python3.6/site-packages/
- git clone https://github.com/AMLab-Amsterdam/lie_learn
- cd lie_learn
- python setup.py install
- cd ..
# installing the forked se3cnn repo from our CNNs4QSPR organization
# also in the site-packages
- git clone https://github.com/CNNs4QSPR/se3cnn.git
- cd se3cnn
- python setup.py install
# installing things relevant to unit testing
- conda install --yes -c anaconda coverage
- conda install --yes -c conda-forge coveralls
script:
- cd /home/travis/build/CNNs4QSPR/cnns4qspr
- coverage run -m unittest discover
after_success:
- coverage report
- coveralls