From 52dad3d1c154c268ff8d91b208aebb1883cfe1ea Mon Sep 17 00:00:00 2001 From: Ricardo Guilherme Schmidt <3esmit@gmail.com> Date: Sat, 21 Dec 2024 01:19:02 -0300 Subject: [PATCH] chore(docs/multiplier-points.md): Workaround GitHub Markdown bug --- docs/multiplier-points.md | 38 +++++++++++++++++++------------------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/docs/multiplier-points.md b/docs/multiplier-points.md index 38f0594..0783518 100644 --- a/docs/multiplier-points.md +++ b/docs/multiplier-points.md @@ -26,7 +26,7 @@ This document explains: The formula for Initial MP is derived as follows: $$ -\text{MP}_\text{Initial} = \text{Stake} \times \left( 1 + \frac{\text{APY} \times T_\text{lock}}{100 \times T_\text{year}} \right) +\text{MP}_ \text{Initial} = \text{Stake} \times \left( 1 + \frac{\text{APY} \times T_ \text{lock}}{100 \times T_ \text{year}} \right) $$ Where: @@ -43,7 +43,7 @@ This formula calculates the MP issued immediately when tokens are staked with a Accrued MP is calculated for time elapsed as: $$ -\text{MP}_\text{Accrued} = \text{Stake} \times \frac{\text{APY} \times T_\text{elapsed}}{100 \times T_\text{year}} +\text{MP}_ \text{Accrued} = \text{Stake} \times \frac{\text{APY} \times T_ \text{elapsed}}{100 \times T_ \text{year}} $$ Where: @@ -57,7 +57,7 @@ This formula adds MP as a function of time, rewarding users who keep their stake Total MP combines both Initial MP and Accrued MP: $$ -\text{MP}_\text{Total} = \text{MP}_\text{Initial} + \text{MP}_\text{Accrued} +\text{MP}_ \text{Total} = \text{MP}_ \text{Initial} + \text{MP}_ \text{Accrued} $$ This total is used to calculate the user’s share of rewards. @@ -67,7 +67,7 @@ This total is used to calculate the user’s share of rewards. The rewards distributed in the system are proportional to each user’s MP. The formula for reward share is: $$ -\text{Reward}_\text{user} = \text{Rewards}_\text{Total} \times \frac{\text{MP}_\text{user}}{\text{MP}_\text{total}} +\text{Reward}_ \text{user} = \text{Rewards}_ \text{Total} \times \frac{\text{MP}_ \text{user}}{\text{MP}_ \text{total}} $$ This ensures rewards are allocated based on the user’s contribution to the total MP. @@ -87,29 +87,29 @@ Let’s consider three participants: Alice, Bob, and Charlie. The total reward p Using the formula: $$ -\text{MP}_\text{Initial} = 100 \times \left( 1 + \frac{100 \times 30}{100 \times 365} \right) +\text{MP}_ \text{Initial} = 100 \times \left( 1 + \frac{100 \times 30}{100 \times 365} \right) $$ $$ -\text{MP}_\text{Initial} = 100 \times \left( 1 + 0.082 \right) = 108.2 +\text{MP}_ \text{Initial} = 100 \times \left( 1 + 0.082 \right) = 108.2 $$ #### Accrued MP $$ -\text{MP}_\text{Accrued} = 100 \times \frac{100 \times 15}{100 \times 365} = 4.1 +\text{MP}_ \text{Accrued} = 100 \times \frac{100 \times 15}{100 \times 365} = 4.1 $$ #### Total MP $$ -\text{MP}_\text{Total} = 108.2 + 4.1 = 112.3 +\text{MP}_ \text{Total} = 108.2 + 4.1 = 112.3 $$ #### Reward Share $$ -\text{Reward}_\text{Alice} = 10,000 \times \frac{112.3}{1,146.7} \approx 978.9 +\text{Reward}_ \text{Alice} = 10,000 \times \frac{112.3}{1,146.7} \approx 978.9 $$ ### Example 2: Bob @@ -121,29 +121,29 @@ $$ #### Initial MP $$ -\text{MP}_\text{Initial} = 500 \times \left( 1 + \frac{100 \times 90}{100 \times 365} \right) +\text{MP}_ \text{Initial} = 500 \times \left( 1 + \frac{100 \times 90}{100 \times 365} \right) $$ $$ -\text{MP}_\text{Initial} = 500 \times \left( 1 + 0.247 \right) = 623.5 +\text{MP}_ \text{Initial} = 500 \times \left( 1 + 0.247 \right) = 623.5 $$ #### Accrued MP $$ -\text{MP}_\text{Accrued} = 500 \times \frac{100 \times 45}{100 \times 365} = 61.6 +\text{MP}_ \text{Accrued} = 500 \times \frac{100 \times 45}{100 \times 365} = 61.6 $$ #### Total MP $$ -\text{MP}_\text{Total} = 623.5 + 61.6 = 685.1 +\text{MP}_ \text{Total} = 623.5 + 61.6 = 685.1 $$ #### Reward Share $$ -\text{Reward}_\text{Bob} = 10,000 \times \frac{685.1}{1,146.7} \approx 5,975.2 +\text{Reward}_ \text{Bob} = 10,000 \times \frac{685.1}{1,146.7} \approx 5,975.2 $$ ### Example 3: Charlie @@ -155,25 +155,25 @@ $$ #### Initial MP $$ -\text{MP}_\text{Initial} = 300 \times \left( 1 + \frac{100 \times 0}{100 \times 365} \right) = 300 +\text{MP}_ \text{Initial} = 300 \times \left( 1 + \frac{100 \times 0}{100 \times 365} \right) = 300 $$ #### Accrued MP $$ -\text{MP}_\text{Accrued} = 300 \times \frac{100 \times 60}{100 \times 365} = 49.3 +\text{MP}_ \text{Accrued} = 300 \times \frac{100 \times 60}{100 \times 365} = 49.3 $$ #### Total MP $$ -\text{MP}_\text{Total} = 300 + 49.3 = 349.3 +\text{MP}_ \text{Total} = 300 + 49.3 = 349.3 $$ #### Reward Share $$ -\text{Reward}_\text{Charlie} = 10,000 \times \frac{349.3}{1,146.7} \approx 3,045.9 +\text{Reward}_ \text{Charlie} = 10,000 \times \frac{349.3}{1,146.7} \approx 3,045.9 $$ ### Total MP Calculation @@ -181,7 +181,7 @@ $$ The total MP for all participants is: $$ -\text{MP}_\text{Total All} = 112.3 + 685.1 + 349.3 = 1,146.7 +\text{MP}_ \text{Total All} = 112.3 + 685.1 + 349.3 = 1,146.7 $$ ## Summary