-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCO2_mini.c
464 lines (434 loc) · 14.8 KB
/
CO2_mini.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
* CO2_mini.c
* Send over nRF24 CO2 level
*
* Created: 24.01.2023
* Author: Vadim Kulakov, vad7@yahoo.com
*
* ATtiny44A
*
* Radio nRF24L01+
*/
#define F_CPU 4000000UL
// Fuses: BODLEVEL = 1.8V (BODLEVEL[2:0] = 110), EESAVE(=0)
//#define DEBUG_PROTEUS
#include <stdlib.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <util/delay.h>
#include <util/atomic.h>
const char ProgramID[] PROGMEM = "CO2 mini v2";
//#define DEBUG_PROTEUS
#define LED1_ANODE_TO_VCC
#define LED1_PORT PORTA // Info led
#define LED1 (1<<PORTA1)
#ifdef LED1_ANODE_TO_VCC
#define LED1_ON LED1_PORT &= ~LED1
#define LED1_OFF LED1_PORT |= LED1
#else
#define LED1_ON LED1_PORT |= LED1
#define LED1_OFF LED1_PORT &= ~LED1
#endif
#define KEY1 (1<<PORTB0) // = IR Receiver out
#define KEY1_PRESSING !(PINB & KEY1)
#define KEYS_SETUP PORTB |= KEY1
#define CO2SensorState (PINA & (1<<PORTA7)) // SenseAir S8 LP - 1kHz PWM out, using Input Capture
#define CO2SensorMax 2000 // ppm
#define CO2_PWM_Add 1
#define UNUSED_PINS_SETUP PORTA |= (1<<PORTA0); PORTB |= (1<<PORTB1) | (1<<PORTB2) // Pullup: not used
#define SETUP_WATCHDOG WDTCSR = (1<<WDCE) | (1<<WDE); WDTCSR = (1<<WDE) | (0<<WDIE) | (0<<WDP3) | (1<<WDP2) | (1<<WDP1) | (0<<WDP0); // Watchdog 1 s
// // 0xF0 mask - Number of long flashes, 0x0F mask - Number of short flashes
#define WRN_SETUP 0x01
#define WRN_SETUP_INFO 0x02
#define WRN_SETUP_ERR 0x10
#define WRN_RF_Send 0x10 // Send failure, after short bursts = fan offset (mask 0x0F)
#define WRN_RF_SetAddr 0x10 // Set addresses failure,
#define WRN_RF_NotResp 0x30 // RF module not response,
#define WRN_CO2Sensor 0x40 // CO2 Sensor reading failure
#define MAX_FANS 10 // Maximum fans
// EEPROM.Flags:
#define f_TransmitOnly (1<<0) // 1 - Only transmit to RF_FanAddr, 0 - receive/transmit in rotation
struct _EEPROM {
uint8_t _OSCCAL;
uint8_t RF_RxAddress; // nRF24 receive address LSB
uint8_t RF_Channel; // nRF24 channel
uint8_t RF_REG_SETUP_RETR; //(0bxxxx<<NRF24_BIT_ARD) | (0bxxxx<<NRF24_BIT_ARC), // Auto Retransmit Delay, Number Re-Transmit on fail
uint8_t SendPeriod; // sec
int16_t CO2_Threshold; // Threshold for speed = 1
int16_t CO2_correct; // for correct CO2 measure - add to sensor value
uint8_t RF_FanAddr[MAX_FANS]; // Fans address LSB
uint8_t RF_Pause; // Pause between packets, ms (# 19)
uint8_t Flags;
} __attribute__ ((packed));
struct _EEPROM EEMEM EEPROM;
#define fCMD_Write 0x80 // EEPROM[Type] = Data, "fCMD_WriteStart" must be preceded, timeout - fCMD_Write_Timeout
#define fCMD_Read 0x40 // read MEM[Data] => Data, MEM: EEPROM, MAIN, PROGRAM
#define fCMD_Set 0xC0 // Set cmd, Type = cmd id, Data = cmd value
#define fCMD_WriteStart 0x2F
// fCMD +
#define fCMD_EEPROM 0x00 // EEPROM
#define fCMD_RAM 0x10 // RAM memory
#define fCMD_PROGMEM 0x20 // Program FLASH
#define fCMD_1b 0x01
#define fCMD_2b 0x02
#define fCMD_4b 0x03
#define fCMD_8b 0x04
#define fCMD_CStr 0x05 // #0 = ProgramID
#define Type_Set_Lamp 0 // Lamp ON/OFF, bit num
#define Type_Set_RESET 14 // Restart program, software reset (Data = 0xEEEE)
#define fCMD_Write_Timeout 3 // *0.1 sec
struct SETUP_DATA { // the same size as SEND_DATA!
uint16_t Data; // Read/Write byte or word
uint8_t Type; // Read data type(SetupType.*) or Write EEPROM addressfCMD_Write_Timeout
uint8_t Flags; // Setup command: fSetup_*
} __attribute__ ((packed));
struct SEND_DATA {
uint16_t CO2level;
uint8_t FanSpeed;
uint8_t Flags;
} __attribute__ ((packed));
struct SEND_DATA data;
uint8_t WriteTimeout = 0; // > 0 - Write starting
volatile uint8_t LED_Warning = 0; // Flashes, long (mask 0xF0): 0 - all ok, or ERR_*
uint8_t LED_WarningOnCnt = 0, LED_WarningOffCnt = 0, LED_Warning_WorkLong = 0, LED_Warning_WorkShort = 0;
volatile uint8_t Timer = 0;
volatile uint8_t NRF_poll = 0;
int16_t CO2Level = 0;
int16_t CO2Level_correct = 0;
uint8_t CO2Level_new = 0; // if > 0 then decrement on timer overflow, if = 0 then CO2 = MAX
uint8_t Flags;
uint8_t Setup_timer = 15; // sec
uint8_t CMD_Set_Flags = 0;
#if(1)
void Delay10us(uint8_t ms) {
while(ms-- > 0) _delay_us(10);
wdt_reset();
}
//void Delay1ms(uint8_t ms) {
// while(ms-- > 0) {
// _delay_ms(1);
// wdt_reset();
// }
//}
void Delay100ms(unsigned int ms) {
while(ms-- > 0) {
_delay_ms(100);
wdt_reset();
}
}
void FlashLED(uint8_t num, uint8_t toff, uint8_t ton) {
while (num-- > 0) {
LED1_OFF;
Delay100ms(toff);
LED1_ON;
Delay100ms(ton);
}
LED1_OFF;
}
void FlashNumber(uint8_t Number)
{ // HEX
FlashLED(Number / 16, 5, 15);
Delay100ms(20);
FlashLED(Number % 16, 5, 5);
Delay100ms(20);
}
#endif
#include "nRF24L01.h"
uint16_t TCNT1_prev = 0;
uint16_t TCNT1_last = 0;
ISR(TIM1_CAPT_vect)
{
TCNT1_prev = TCNT1_last;
TCNT1_last = ICR1;
if(TCCR1B & (1<<ICES1)) {
TCCR1B &= ~(1<<ICES1);
} else {
TCCR1B |= (1<<ICES1);
uint16_t n = (TCNT1_last - TCNT1_prev + CO2_PWM_Add) / 2; // tick = 0.5us, 2000 ppm = 1ms
if(n > CO2SensorMax) n = CO2SensorMax; else n += CO2Level_correct;
CO2Level = n;
//CO2Level = (CO2Level + n) / 2;
CO2Level_new = 2;
}
}
ISR(TIM1_OVF_vect) // there is no pulses - max value, period 16.384 ms
{
if(CO2Level_new) CO2Level_new--; else CO2Level = CO2SensorMax;
}
uint8_t TimerCnt = 0;
uint8_t TimerSec = 0;
ISR(TIM0_OVF_vect, ISR_NOBLOCK) // 500Hz, 0.002 s
{
if(++TimerCnt == 50) { // 0.1 sec
TimerCnt = 0;
if(++TimerSec == 10) { // 1 sec
TimerSec = 0;
if(Timer) Timer--;
if(Setup_timer) Setup_timer--;
}
if(WriteTimeout) WriteTimeout--;
// LED_Warning: 0xF0 mask - Number of long flashes, 0x0F mask - Number of short flashes, LED_Warning_NoRepeat = no repeat
if(LED_WarningOnCnt) {
LED1_ON;
LED_WarningOnCnt--;
} else if(LED_WarningOffCnt) {
LED1_OFF;
LED_WarningOffCnt--;
} else if(LED_Warning_WorkLong) { // long flashes
LED_Warning_WorkLong--;
LED_WarningOnCnt = 12; // 1.2s
if(LED_Warning_WorkLong == 0) {
LED_WarningOffCnt = 6; // 0.6s
goto xSetPause;
} else LED_WarningOffCnt = 4; // 0.4s
} else if(LED_Warning_WorkShort) { // short flashes
LED_Warning_WorkShort--;
LED_WarningOnCnt = 3; // 0.3s
LED_WarningOffCnt = 3; // 0.3s
xSetPause:
if(LED_Warning_WorkShort == 0) LED_WarningOffCnt = 24; // 2.4s
} else if(LED_Warning) {
LED_Warning_WorkLong = (LED_Warning & 0xF0) >> 4;
LED_Warning_WorkShort = LED_Warning & 0x0F;
LED_Warning = 0;
} else if(CMD_Set_Flags & (1<<Type_Set_Lamp)) LED1_ON;
}
NRF_poll = 1;
}
void Set_LED_Warning(uint8_t d)
{
if(LED_Warning == 0) LED_Warning = d;
}
void Set_LED_Warning_New(uint8_t d)
{
LED_Warning_WorkLong = LED_Warning_WorkShort = LED_WarningOnCnt = LED_WarningOffCnt = 0;
LED_Warning = d;
LED1_OFF;
}
void GetSettings(void)
{
uint8_t b = eeprom_read_byte(&EEPROM._OSCCAL);
if(b != 0xFF) OSCCAL = b;
CO2Level_correct = eeprom_read_word((uint16_t*)&EEPROM.CO2_correct);
Flags = eeprom_read_byte(&EEPROM.Flags);
}
void ResetSettings(void)
{
//eeprom_update_byte(&EEPROM._OSCCAL, OSCCAL);
eeprom_update_byte(&EEPROM.RF_RxAddress, 0xCF);
eeprom_update_byte(&EEPROM.RF_Channel, 122);
eeprom_update_byte(&EEPROM.RF_REG_SETUP_RETR, (0b0000<<NRF24_BIT_ARD) | (0b1111<<NRF24_BIT_ARC)); // Auto Retransmit Delay, Re-Transmit on fail
eeprom_update_byte(&EEPROM.SendPeriod, 30); // sec
eeprom_update_word((uint16_t*)&EEPROM.CO2_Threshold, 1000); // ppm
eeprom_update_word((uint16_t*)&EEPROM.CO2_correct, 0);
eeprom_update_byte(&EEPROM.RF_FanAddr[0], 0xC1);
eeprom_update_byte(&EEPROM.RF_FanAddr[1], 0); // after last => 0
eeprom_update_byte(&EEPROM.RF_Pause, 1); // msec
eeprom_update_byte(&EEPROM.Flags, 0); // Receive/Transmit
}
int main(void)
{
CLKPR = (1<<CLKPCE); CLKPR = (0<<CLKPS3) | (0<<CLKPS2) | (0<<CLKPS1) | (1<<CLKPS0); // Clock prescaler division factor: 2
MCUCR = (1<<SE) | (0<<SM1) | (0<<SM0); // Idle sleep enable
DDRA = LED1; // Out
NRF24_DDR |= NRF24_CE | NRF24_CSN | NRF24_SCK | NRF24_MOSI; // Out
KEYS_SETUP;
UNUSED_PINS_SETUP;
// Timer 8 bit NRF24L01_Buffer Unknown identifier Error
TCCR0A = (1<<WGM01) | (1<<WGM00); // Timer0: Fast PWM OCRA
TCCR0B = (1<<WGM02) | (1 << CS02) | (0 << CS01) | (0 << CS00); // Timer0 prescaller: 256
OCR0A = 30; // OC0A - Fclk/(prescaller*(1+TOP)) = 500hz
//OCR0B = 0; // Half Duty cycle ((TOP+1)/2-1)
TIMSK0 = (1<<TOIE0); // Timer/Counter0, Overflow Interrupt Enable
// Timer 16 bit
TCCR1A = (1<<WGM11) | (1<<WGM10); // Timer1: Fast PWM Top OCR1A (15)
TCCR1B = (1<<ICES1) | (0<<ICNC1) | (1<<WGM13) | (1<<WGM12) | (0<<CS12) | (0<<CS11) | (1<<CS10); // Timer1: /1, Input Capture Rising Edge
OCR1A = 0xFFFF; // =Fclk/prescaller/Freq - 1; Freq=Fclk/(prescaller*(1+TOP)). resolution 0.5us/2
TIMSK1 = (1<<ICIE1) | (1<<TOIE1); // Timer/Counter1: Input Capture Interrupt Enable
// ADC
//ADMUX = (0<<REFS1) | (1<<MUX2)|(1<<MUX1)|(1<<MUX0); // ADC7 (PA7)
//ADCSRA = (1<<ADEN) | (0<<ADATE) | (1<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0); // ADC enable, Free Running mode, Interrupt, ADC 128 divider
//ADCSRB = (1<<ADLAR) | (0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0); // ADC Left Adjust Result
// Pin change
//GIMSK = (1<<PCIE0) | (1<<PCIE1); // Pin Change Interrupt Enable 0, 1
//PCMSK0 = (1<<PCINT0); // Pin Change Mask Register 0 - Sensor
//PCMSK1 = (1<<PCINT8) | (1<<PCINT9) | (1<<PCINT10); // Pin Change Mask Register 0 - Keys
if(eeprom_read_byte(&EEPROM.RF_RxAddress) == 0xFF) ResetSettings();
GetSettings();
//Delay100ms(1);
SETUP_WATCHDOG;
sei();
FlashLED(2,1,1);
Timer = 10;
while(KEY1_PRESSING) {
wdt_reset();
if(Timer == 0) {
FlashLED(50, 1, 1);
ResetSettings();
cli(); while(1) ; // restart
}
}
NRF24_init(eeprom_read_byte(&EEPROM.RF_Channel)); // After init transmit must be delayed
NRF24_WriteByte(NRF24_CMD_W_REGISTER | NRF24_REG_SETUP_RETR, eeprom_read_byte(&EEPROM.RF_REG_SETUP_RETR));
while(!NRF24_SetAddresses(eeprom_read_byte(&EEPROM.RF_RxAddress))) {
FlashLED(5,1,1);
#ifdef DEBUG_PROTEUS
break;
#endif
}
{ // adjust OSCAL on 1kHz PWM form CO2 sensor
int16_t n, delta, prev_delta = 32767;
uint16_t prev = 0;
uint8_t skip = 1;
uint8_t prev_OSCCAL = OSCCAL;
Timer = 2; // sec
do {
__asm__ volatile ("" ::: "memory"); // Need memory barrier
sleep_cpu();
wdt_reset();
if((TCCR1B & (1<<ICES1)) == 0) { // New
ATOMIC_BLOCK(ATOMIC_FORCEON) {
n = TCNT1_prev - prev;
prev = TCNT1_prev;
}
if(skip) {
skip = 0;
continue;
}
delta = n - CO2SensorMax * 2 + CO2_PWM_Add;
if(prev_delta < 4 && prev_delta < abs(delta)) {
OSCCAL = prev_OSCCAL;
eeprom_update_byte(&EEPROM._OSCCAL, OSCCAL);
break;
}
prev_OSCCAL = OSCCAL;
if(delta < 0) {
OSCCAL = prev_OSCCAL + 1;
} else if(delta > 0) {
OSCCAL = prev_OSCCAL - 1;
} else break;
prev_delta = abs(delta);
skip = 1;
}
} while(Timer);
}
uint8_t n = eeprom_read_byte(&EEPROM.SendPeriod);
if(n < 128) n *= 2;
Timer = n;
NRF24_SetMode(NRF24_ReceiveMode);
while(1)
{
__asm__ volatile ("" ::: "memory"); // Need memory barrier
do {
sleep_cpu();
wdt_reset();
} while(!NRF_poll);
NRF_poll = 0;
if((Setup_timer || !(Flags & f_TransmitOnly)) && NRF24_Receive((uint8_t*)&data)) {
Set_LED_Warning(1);
struct SETUP_DATA *p = (struct SETUP_DATA*)&data;
register uint8_t cmd = p->Flags;
if(cmd == fCMD_Set) { // SET command
//int8_t d = p->Data;
register uint8_t type = p->Type;
if(type == Type_Set_RESET) {
if(p->Data != 0xEEEE) continue;
//xReset:
LED1_ON;
cli(); while(1) ; // restart
} else if(type == Type_Set_Lamp) { // Switch Lamp
uint8_t d = ((p->Data & 1)<<Type_Set_Lamp);
CMD_Set_Flags = (CMD_Set_Flags & ~(1<<Type_Set_Lamp)) | d;
if(!d) LED1_OFF;
}
Setup_timer = 255; // sec
} else if(cmd == fCMD_WriteStart) {
WriteTimeout = fCMD_Write_Timeout;
} else if(cmd & fCMD_Read) { // READ command
register uint8_t cmd2 = cmd & 0xF0;
cmd &= 0x0F;
if(cmd2 == fCMD_Read + fCMD_EEPROM) {
if(p->Data < sizeof(struct _EEPROM)) {
if(cmd == fCMD_2b) p->Data = eeprom_read_word((uint16_t*)((uint8_t*)&EEPROM + p->Data));
else p->Data = eeprom_read_byte((uint8_t*)&EEPROM + p->Data);
//p->Type = p->Flags = 0;
} else continue;
} else if(cmd2 == fCMD_Read + fCMD_RAM) {
ATOMIC_BLOCK(ATOMIC_FORCEON) {
if(cmd == fCMD_2b) p->Data = *((uint16_t *)p->Data);
else p->Data = *((uint8_t *)p->Data);
}
//p->Type = p->Flags = 0;
} else if(cmd2 == fCMD_Read + fCMD_PROGMEM) {
if(cmd == fCMD_2b) p->Data = pgm_read_word(p->Data);
else if(cmd == fCMD_1b) p->Data = pgm_read_byte(p->Data);
//p->Type = p->Flags = 0;
} else continue;
Delay100ms(1);
NRF24_SetMode(NRF24_TransmitMode);
uint8_t err = 0;
if(cmd == fCMD_CStr) {
for(uint8_t i = 0; i < sizeof(ProgramID); i++) {
p->Data = pgm_read_byte(&ProgramID[i]);
err = NRF24_Transmit((uint8_t *)&data);
if(err) break;
//Delay10us(255);
for(uint8_t j = 0; j < eeprom_read_byte(&EEPROM.RF_Pause); j++) Delay10us(100);
}
} else err = NRF24_Transmit((uint8_t *)&data);
NRF24_SetMode(NRF24_ReceiveMode);
if(err) Set_LED_Warning_New((err + 1) << 4);
Setup_timer = 255; // sec
} else if(cmd & fCMD_Write) { // WRITE command
if(WriteTimeout) {
register uint8_t cmd2 = cmd & 0x30;
cmd &= 0x0F;
if(cmd2 == fCMD_RAM) {
ATOMIC_BLOCK(ATOMIC_FORCEON) {
if(cmd == fCMD_2b) *((uint16_t *)(uint16_t)p->Type) = p->Data;
else *((uint8_t *)(uint16_t)p->Type) = p->Data;
}
} else if(cmd2 == fCMD_EEPROM) {
if(cmd == fCMD_2b) {
eeprom_update_word((uint16_t*)((uint8_t*)&EEPROM + p->Type), p->Data);
} else {
eeprom_update_byte((uint8_t*)&EEPROM + p->Type, p->Data);
}
GetSettings();
//Set_LED_Warning_New(WRN_SETUP_INFO);
}
WriteTimeout = fCMD_Write_Timeout;
}
Setup_timer = 255; // sec
}
continue;
}
if(Timer == 0) {
NRF24_SetMode(NRF24_TransmitMode);
data.FanSpeed = data.Flags = 0;
ATOMIC_BLOCK(ATOMIC_FORCEON) { data.CO2level = CO2Level; }
if(data.CO2level > (int16_t)eeprom_read_word((uint16_t*)&EEPROM.CO2_Threshold)) data.FanSpeed = 1;
for(uint8_t fan = 0; fan < MAX_FANS; fan++) {
uint8_t addr = eeprom_read_byte(&EEPROM.RF_FanAddr[fan]);
if(addr == 0) break;
if(!NRF24_SetAddresses(addr)) {
Set_LED_Warning(WRN_RF_SetAddr);
break;
}
uint8_t err = NRF24_Transmit((uint8_t *)&data);
if(err) Set_LED_Warning(WRN_RF_Send + fan + 1);
}
if(!Setup_timer && (Flags & f_TransmitOnly)) {
NRF24_SET_CE_LOW; // Standby-1
} else {
if(!NRF24_SetAddresses(eeprom_read_byte(&EEPROM.RF_RxAddress))) Set_LED_Warning(WRN_RF_SetAddr);
NRF24_SetMode(NRF24_ReceiveMode);
}
Timer = eeprom_read_byte(&EEPROM.SendPeriod);
}
}
}