-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral.py
executable file
·156 lines (111 loc) · 4.18 KB
/
spectral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 3 13:37:23 2021
@author: darwin
"""
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
from scipy.io.wavfile import read
from scipy.fft import rfft, rfftfreq
import os
def getAudioAsNpArray(file):
print("filename", file)
audio = read(file)
sampling_rate = audio[0] # samples per second
print(file, "sampling rate:", sampling_rate)
audio_array = np.array(audio[1], dtype=float)
return sampling_rate, audio_array
def getAudioChunks(chunk_duration, sampling_rate, audioArray):
n_chunks = len(audioArray) // (chunk_duration * sampling_rate)
return np.array_split(audioArray, n_chunks)
def getChunkSpectrum(sampling_rate, audio_chunk):
N = len(audio_chunk)
yf = rfft(audio_chunk)
xf = rfftfreq(N, 1 / sampling_rate)
return xf, yf
def getMeanSpectrum(sampling_rate, audio_chunks):
xf0, yf0 = getChunkSpectrum(sampling_rate, audio_chunks[2])
spectrum_mat = yf0.reshape(1, len(yf0))
for chunk in audio_chunks[1:-1]:
xf, yf = getChunkSpectrum(sampling_rate, chunk)
spectrum_mat = np.concatenate(
(spectrum_mat, np.abs(yf).reshape(1, len(yf))), axis=0
)
spectrum_mean = np.mean(spectrum_mat, axis=0)
return xf0, spectrum_mean
def plotSpectrum(xf, yf, name):
plt.title(name)
plt.plot(xf, np.abs(yf))
plt.show()
fontP = FontProperties()
fontP.set_size("xx-small")
def plotSpectrums(spectrums, title):
plt.figure()
plt.style.use("seaborn-paper")
plt.title(title)
plt.xlabel("frequencies")
plt.ylabel("amplitude")
# 20 * np.log10(np.abs(spectrum["yf"]))
for spectrum in spectrums:
plt.plot(
spectrum["xf"],
20 * np.log10(np.abs(spectrum["yf"])),
linewidth=1,
label=spectrum["name"],
)
plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", prop=fontP)
plt.tight_layout()
plt.savefig(f"plots/{title}.png", dpi=500)
# plt.show()
def spectralAnalysisPlot(audio_file_paths, audio_files, title):
audio_signals = []
for i, f in enumerate(audio_file_paths, start=0):
fs, arr = getAudioAsNpArray(f)
audio_signals.append({"array": arr, "fs": fs, "name": audio_files[i]})
i = +1
chunk_size = 0.02 # seconds
audio_spectrum = []
for signal in audio_signals:
chunks = getAudioChunks(chunk_size, signal["fs"], signal["array"])
mxf, myf = getMeanSpectrum(fs, chunks)
audio_spectrum.append({"xf": mxf, "yf": myf, "name": signal["name"]})
# for spectrum in audio_spectrum :
# plotSpectrum(spectrum["xf"], spectrum["yf"], spectrum["name"])
plotSpectrums(audio_spectrum, title)
#%%
# audio_file = "aaa.wav"
# fs, arr = getAudioAsNpArray(audio_file)
# chunks = getAudioChunks(0.02, fs, arr)
# xf, yf = getChunkSpectrum(fs, arr)
# mxf, myf = getMeanSpectrum(fs, chunks)
# plotSpectrum(xf, yf)
# plotSpectrum(mxf, myf)
#%%
def absoluteFilePaths(directory):
for dirpath, _, filenames in os.walk(directory):
for f in filenames:
yield os.path.abspath(os.path.join(dirpath, f))
audio_files = ["aaa/ooo.wav", "aaa/mmm.wav"]
aaa = filter(lambda x: (".wav" in x), list(absoluteFilePaths("./AAA")))
eee = filter(lambda x: (".wav" in x), list(absoluteFilePaths("./EEE")))
uuu = filter(lambda x: (".wav" in x), list(absoluteFilePaths("./UUU")))
white = filter(lambda x: (".wav" in x), list(absoluteFilePaths("./WhiteNoise")))
# eee = list(absoluteFilePaths("./EEE"))
# uuu = list(absoluteFilePaths("./UUU"))
# white = list(absoluteFilePaths("./WhiteNoise"))
aaa_filenames = os.listdir("./AAA")
aaa_filenames.remove(".DS_Store")
eee_filenames = os.listdir("./EEE")
eee_filenames.remove(".DS_Store")
uuu_filenames = os.listdir("./UUU")
uuu_filenames.remove(".DS_Store")
white_filenames = os.listdir("./WhiteNoise")
white_filenames.remove(".DS_Store")
# white_filenames = os.listdir("./WhiteNoise")
# print(os.listdir("./aaa"))
spectralAnalysisPlot(white, white_filenames, "white")
spectralAnalysisPlot(aaa, aaa_filenames, "aaa")
spectralAnalysisPlot(eee, eee_filenames, "eee")
spectralAnalysisPlot(uuu, uuu_filenames, "uuu")