-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgent.py
331 lines (243 loc) · 10.2 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.utils as utils
from torch.autograd import Variable
import math
from blackhc.mdp import dsl
from blackhc import mdp
import time
from blackhc.mdp import lp
import functools
import numpy as np
from tqdm import tqdm
from matplotlib import pyplot as plt
from numpy import random
from operator import itemgetter
from collections import defaultdict
#############################
from utils import Network,init_weights,ReplayMemory
from pred_env import pred_env
#############################
class Agent():
def __init__(self,observation_space,action_space,gamma=0.99,learning_rate=1e-3,horizon_len=20,k=10,fraction_of_real=0.5,batch_size=200):
self.model = Network(observation_space.n,action_space.n)
self.gamma = gamma
self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
self.model.train()
self.horizon_len=horizon_len # Assuming we already know the horizon length
self.env_model =pred_env(self.horizon_len,k)
self.D_fake=ReplayMemory(capacity=10000)
self.fraction_of_real=fraction_of_real
self.batch_size=batch_size
def init_env_model(self):
self.env_model.set_start_state()
self.D_fake.flush_all()
def reset(self):
# init_weights(self.model)
self.env_model.reset()
self.D_fake.flush_all()
def action(self, state):
probs = self.model(Variable(state))
action = probs.multinomial(1).data
prob = probs[:, action[0,0]].view(1, -1)
log_prob = prob.log()
return(action, log_prob)
def update_D_fake(self,num_of_epi,start_state=None):
if start_state is None:
s_t=self.env_model.curr_state
else:
s_t=start_state
self.env_model.curr_state=s_t
result=[]
trajs=[]
for traj_id in range(num_of_epi):
if self.env_model.Is_terminal_state(self.env_model.curr_state):
self.env_model.set_start_state()
s_t=self.env_model.curr_state
states=[]
log_probs=[]
rewards=[]
actions=[]
nstates=[]
for t in range(self.env_model.k):
a_t, log_prob = self.action(s_t)
while True:
rlt=self.env_model.list_check_up(self.env_model.state_to_action_map,s_t)
if rlt is None:
print(self.env_model.state_to_action_map)
print(s_t)
print(a_t)
print(done)
print("Pover")
return
else:
if any([torch.equal(a_t,x) for x in self.env_model.state_to_action_map[rlt]])!=True:
a_t, log_prob = self.action(s_t)
else:
break
ns_t, r_t, done, _ = self.env_model.step_v1(a_t)
states.append(s_t)
actions.append(a_t)
log_probs.append(log_prob)
rewards.append(r_t)
nstates.append(ns_t)
s_t=ns_t
self.curr_state=ns_t
if done:
break
self.D_fake.push(states, actions, rewards,nstates, log_probs)
return
def cvt_axis(self,trajs):
t_states = []
t_actions = []
t_rewards = []
t_nstates = []
t_log_probs = []
for traj in trajs:
t_states.append(traj[0])
t_actions.append(traj[1])
t_rewards.append(traj[2])
t_nstates.append(traj[3])
t_log_probs.append(traj[4])
return (t_states, t_actions, t_rewards,t_states,t_log_probs)
def reward_to_value(self,t_rewards, gamma):
t_Rs = []
for rewards in t_rewards:
Rs = []
R = torch.zeros(1, 1)
for i in reversed(range(len(rewards))):
R = gamma * R + rewards[i]
Rs.insert(0, R)
t_Rs.append(Rs)
return(t_Rs)
def cal_log_prob(self, state, action):
probs = self.model(Variable(state))
prob = probs[:, action[0,0]].view(1, -1)
log_prob = prob.log()
return(log_prob)
def MBPO_train_1(self,D_real,mult_fcator=None):
# Given D_real,and a multiplicative factor,will generate fake_data
# ST :len(D_fake)=multipl_factor*len(D_real)
self.env_model.reset()
self.env_model.update_param_given_epi(D_real)
self.init_env_model()
multiple_factor = (1-self.fraction_of_real)/self.fraction_of_real
if mult_fcator is not None:
multiple_factor=mult_fcator
self.update_D_fake(int(multiple_factor*D_real.position))
data_list=self.D_fake.buffer
t_states, t_actions, t_rewards,t_nstates,t_log_probs = self.cvt_axis(data_list)
t_Rs = self.reward_to_value(t_rewards, self.gamma)
Z = 0
b = 0
losses = []
Z_s = []
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
p_log_prob = 0
q_log_prob = 0
for t in range(len(Rs)):
p_log_prob += (self.cal_log_prob(states[t], actions[t])).data.numpy()
q_log_prob += log_probs[t].data.numpy()
Z_ = math.exp(p_log_prob) / math.exp(q_log_prob)
Z += Z_
Z_s.append(Z_)
b += Z_ * sum(Rs) / len(Rs)
b = b / Z
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
loss = 0.
for t in range(len(Rs)):
loss = loss - (log_probs[t] * (Variable(Rs[t] - b).expand_as(log_probs[t]))).sum()
Z_ = Z_s.pop(0)
loss = loss / Z_
losses.append(loss)
loss = sum(losses) / Z
self.optimizer.zero_grad()
loss.backward(retain_graph=True)
utils.clip_grad_value_(self.model.parameters(),40)
self.optimizer.step()
return
def MBPO_train_2(self,D_real,fraction_of_real=None):
# Given D_real,and the fraction of real to fake trajs,then train the policy on data comprising D_fake and D_real
# ST real_ratio follows the value given
self.env_model.reset()
self.env_model.update_param_given_epi(D_real)
self.init_env_model()
# mult_factor = (1-self.fraction_of_real)/self.fraction_of_real
mult_factor = 1
self.update_D_fake(int(mult_factor*D_real.position))
frc_of_real=self.fraction_of_real
if fraction_of_real is not None:
frc_of_real=fraction_of_real
self.batch_size=D_real.position
num_of_real_epi=int(self.batch_size*frc_of_real)
num_of_fake_epi=self.batch_size-num_of_real_epi
pos_list=np.random.choice(a=len(self.D_fake.buffer),size=min([num_of_fake_epi,len(self.D_fake.buffer)]))
fake_data_list=[self.D_fake.buffer[pos] for pos in pos_list]
pos_list=np.random.choice(a=len(D_real.buffer),size=min([num_of_real_epi,len(D_real.buffer)]))
real_data_list=[D_real.buffer[pos] for pos in pos_list]
data_list=real_data_list+fake_data_list
t_states, t_actions, t_rewards,t_nstates,t_log_probs = self.cvt_axis(data_list)
t_Rs = self.reward_to_value(t_rewards, self.gamma)
Z = 0
b = 0
losses = []
Z_s = []
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
p_log_prob = 0
q_log_prob = 0
for t in range(len(Rs)):
p_log_prob += (self.cal_log_prob(states[t], actions[t])).data.numpy()
q_log_prob += log_probs[t].data.numpy()
Z_ = math.exp(p_log_prob) / math.exp(q_log_prob)
Z += Z_
Z_s.append(Z_)
b += Z_ * sum(Rs) / len(Rs)
b = b / Z
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
loss = 0.
for t in range(len(Rs)):
loss = loss - (log_probs[t] * (Variable(Rs[t] - b).expand_as(log_probs[t]))).sum()
Z_ = Z_s.pop(0)
loss = loss / Z_
losses.append(loss)
loss = sum(losses) / Z
self.optimizer.zero_grad()
loss.backward(retain_graph=True)
utils.clip_grad_value_(self.model.parameters(),40)
self.optimizer.step()
return
def train_(self, D_real):
# Pure policy gradient
data_list=D_real.buffer
t_states, t_actions, t_rewards,t_nstates,t_log_probs = self.cvt_axis(data_list)
t_Rs = self.reward_to_value(t_rewards, self.gamma)
Z = 0
b = 0
losses = []
Z_s = []
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
p_log_prob = 0
q_log_prob = 0
for t in range(len(Rs)):
p_log_prob += (self.cal_log_prob(states[t], actions[t])).data.numpy()
q_log_prob += log_probs[t].data.numpy()
Z_ = math.exp(p_log_prob) / math.exp(q_log_prob)
Z += Z_
Z_s.append(Z_)
b += Z_ * sum(Rs) / len(Rs)
b = b / Z
for (states, actions, Rs, log_probs) in zip(t_states, t_actions, t_Rs, t_log_probs):
loss = 0.
for t in range(len(Rs)):
loss = loss - (log_probs[t] * (Variable(Rs[t] - b).expand_as(log_probs[t]))).sum()
Z_ = Z_s.pop(0)
loss = loss / Z_
losses.append(loss)
loss = sum(losses) / Z
self.optimizer.zero_grad()
loss.backward(retain_graph=True)
utils.clip_grad_value_(self.model.parameters(),40)
self.optimizer.step()