-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodules.py
73 lines (66 loc) · 3.58 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
class EncoderDecoderBlock(nn.Module):
def __init__(self, module_type, in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False, dropout_p=0.0, norm=True, activation=True):
super().__init__()
if module_type == 'encoder':
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
elif module_type == 'decoder':
self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
else:
raise NotImplementedError(f"Module type '{module_type}' is not valid")
self.lrelu = nn.LeakyReLU(0.2) if activation else None
self.norm = nn.BatchNorm2d(out_channels) if norm else None
self.dropout = nn.Dropout2d(dropout_p)
def forward(self, x):
x = self.lrelu(x) if self.lrelu else x
x = self.conv(x)
x = self.norm(x) if self.norm else x
x = self.dropout(x)
return x
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, bias=False, dropout_p=0.5, norm=True):
super().__init__()
self.encoders = nn.ModuleList([
EncoderDecoderBlock('encoder', in_channels, 64, bias=bias, norm=False, activation=False),
EncoderDecoderBlock('encoder', 64, 128, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 128, 256, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 256, 512, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 512, 512, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 512, 512, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 512, 512, bias=bias, norm=False)
])
self.decoders = nn.ModuleList([
EncoderDecoderBlock('decoder', 512, 512, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 1024, 512, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 1024, 512, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 1024, 256, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 512, 128, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 256, 64, bias=bias, norm=norm),
EncoderDecoderBlock('decoder', 128, out_channels, bias=bias, norm=False)
])
def forward(self, x):
encoder_outputs = [x]
for encoder in self.encoders:
encoder_outputs.append(encoder(encoder_outputs[-1]))
for i, p in enumerate(zip(self.decoders, reversed(encoder_outputs))):
decoder, encoder_out = p
output = decoder(torch.cat([output, encoder_out], 1) if i > 0 else encoder_out)
return nn.Tanh()(output)
class PatchGAN(nn.Module):
def __init__(self, in_channels=6, out_channels=1, bias=False, norm=True):
super().__init__()
self.sigmoid = nn.Sigmoid()
self.discriminator_blocks = nn.ModuleList([
EncoderDecoderBlock('encoder', in_channels, 64, bias=bias, norm=False, activation=False),
EncoderDecoderBlock('encoder', 64, 128, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 128, 256, bias=bias, norm=norm),
EncoderDecoderBlock('encoder', 256, 512, bias=bias, norm=norm, stride=1),
EncoderDecoderBlock('encoder', 512, out_channels, bias=bias, norm=False, stride=1)
])
def forward(self, x, cond):
output = torch.cat([x, cond], 1)
for block in self.discriminator_blocks:
output = block(output)
output = self.sigmoid(output)
return output