-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathserver.py
183 lines (159 loc) · 8.96 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import sys
import random
import argparse
import torch
import flwr as fl
import numpy as np
from functools import partial
from collections import OrderedDict
from torch.utils.data import DataLoader, random_split
import client
import models
import util
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def client_fn(cid, model, client_datasets, test_fraction, epochs, batch_size, device, center_eval=True, flag=False):
model = model()
train_size = int((1. - test_fraction) * len(client_datasets[int(cid)]))
test_size = len(client_datasets[int(cid)]) - train_size
train_dataset, test_dataset = random_split(client_datasets[int(cid)], [train_size, test_size])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
if center_eval:
test_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
else:
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
return client.FlowerClient(cid, model, train_loader, test_loader, epochs, device, flag)
def get_parameters(model):
return [values.cpu().numpy() for _, values in model.state_dict().items()]
def set_parameters(model, parameters):
params_dict = zip(model.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
model.load_state_dict(state_dict)
def evaluate(weights, model, server_testset, device, flag):
model = model()
testloader = DataLoader(server_testset)
set_parameters(model, weights)
loss, _, metric = util.test(model, testloader, device, flag)
sys.stdout.write(f"[SERVER] Evaluation Loss: {loss:.4f} | Metrics: {metric:.4f}" + "\r")
return float(loss), {"metrics": float(metric)}
if __name__ == "__main__":
# Parse configurations
parser = argparse.ArgumentParser(description="Federated Learning Simulation based on Flower")
parser.add_argument('--seed', type=int, default=5959, help='random seed')
parser.add_argument('--data_path', default='./data', help='dataset path')
parser.add_argument('--dataset_name', required=True, help='which data to use for federated learning: {MNIST|CIFAR10|TOX21}')
parser.add_argument('--num_clients', '-N', type=int, default=100, help='total number of clients to participate')
parser.add_argument('--fraction', '-K', type=float, default=0.1, help='fraction of participating clients at each round')
parser.add_argument('--batch_size', '-B', type=int, default=10, help='batch size for local update')
parser.add_argument('--num_epochs', '-E', type=int, default=5, help='number of local epochs')
parser.add_argument('--num_rounds', '-R', type=int, default=10, help='number of required rounds')
parser.add_argument('--num_shards', '-S', type=int, default=200, help='number of resulting shards used for splitting dataset in pathological non-IID setting')
parser.add_argument('--iid', action='store_true', help='wheter to split data in an IID manner')
parser.add_argument('--test_fraction', type=float, default=0.0, help='fraction of test dataset at each client')
args = parser.parse_args()
# Greetings
welcome_message = """
______ _ _ _ _ _
| ___| | | | | | | | | (_)
| |_ ___ __| | ___ _ __ __ _| |_ ___ __| | | | ___ __ _ _ __ _ __ _ _ __ __ _
| _/ _ \/ _` |/ _ | '__/ _` | __/ _ \/ _` | | | / _ \/ _` | '__| '_ \| | '_ \ / _` |
| || __| (_| | __| | | (_| | || __| (_| | | |___| __| (_| | | | | | | | | | | (_| |
\_| \___|\__,_|\___|_| \__,_|\__\___|\__,_| \_____/\___|\__,_|_| |_| |_|_|_| |_|\__, |
__/ |
|___/
_ _ _ ______ _
(_| | | | | ____| |
__ ___| |_| |__ | |__ | | _____ _____ _ __
\ \ /\ / | | __| '_ \ | __| | |/ _ \ \ /\ / / _ | '__|
\ V V /| | |_| | | | | | | | (_) \ V V | __| |
\_/\_/ |_|\__|_| |_| |_| |_|\___/ \_/\_/ \___|_|
----------------------------------------------------------------------------------------
"""
done_by = """
.-') _ .-') .-') _ ('-.
( OO ) ) ( OO ).( OO) ) _( OO)
,--. ,--. ,--./ ,--,',-.-')(_)---\_/ '._ ,-.-')(,------.
| | | | | \ | |\| |OO/ _ ||'--...__) | |OO)| .---'
| | | .-')| \| | | | \ :` `.'--. .--' | | \| |
| |_|( OO | . |/| |(_/'..`''.) | | | |(_(| '--.
| | | `-' | |\ |,| |_..-._) \ | | ,| |_.'| .--'
(' '-'(_.-'| | \ (_| | \ / | | (_| | | `---.
_`.-')-_ _ `-.-')`--' `--' `-----' ('-. .-. .-')`--' `------'
( ( OO) ( '.( OO )_ ( OO ).-\ ( OO )
\ .'_,--. ,--.) ,--. / . --. /;-----.\
,`'--..._| `.' | | |.-') | \-. \ | .-. |
| | \ | | | | OO .-'-' | || '-' /_)
| | ' | |'.'| | | |`-' |\| |_.' || .-. `.
| | / | | | | (| '---.' | .-. || | \ |
| '--' | | | | | | | | | || '--' .-.
`-------'`--' `--' `------' `--' `--'`------'`-'
- By: Seok-Ju Hahn (seokjuhahn@unist.ac.kr)
- GitHub: vaseline555
"""
print(welcome_message, done_by)
# Show configurations
print("\t<=== Configurations ===>\n")
print(' '.join(f'\t * {str(k).upper()}: {v}\n' for k, v in vars(args).items()))
print("\t<======================>")
# Set hyperparameters
set_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #torch.device("cpu")#
center_eval = args.test_fraction == 0
# Load model
if "mnist" in args.dataset_name.lower():
model = models.MnistNet
flag = False
elif "cifar" in args.dataset_name.lower():
model = models.CifarNet
flag = False
elif "tox" in args.dataset_name.lower():
model = models.ToxNet
flag = True
else:
raise NotImplementedError(f'[ERROR] ...dataset {args.dataset_name} is not supported!')
sys.exit(0)
# Load data
client_dataests, server_testset = util.create_datasets(args.data_path, args.dataset_name, args.num_clients, args.num_shards, args.iid)
# Pass parameters to the Strategy for server-side parameter initialization
if center_eval:
strategy = fl.server.strategy.FedAvg(
fraction_fit=args.fraction,
fraction_eval=args.fraction,
min_fit_clients=int(args.num_clients * args.fraction),
min_eval_clients=int(args.num_clients * args.fraction),
min_available_clients=int(args.num_clients * args.fraction),
initial_parameters=fl.common.weights_to_parameters(get_parameters(model().to(device))),
eval_fn=partial(evaluate,
model=model,
server_testset=server_testset,
device=device,
flag=flag)
)
else:
strategy = fl.server.strategy.FedAvg(
fraction_fit=args.fraction,
fraction_eval=args.fraction,
min_fit_clients=1,
min_eval_clients=1,
min_available_clients=1,
initial_parameters=fl.common.weights_to_parameters(get_parameters(model().to(device)))
)
# Start simulation
fl.simulation.start_simulation(
client_fn=partial(client_fn,
model=model,
client_datasets=client_dataests,
test_fraction=args.test_fraction,
epochs=args.num_epochs,
batch_size=args.batch_size,
device=device,
flag=flag),
num_clients=args.num_clients,
num_rounds=args.num_rounds,
client_resources={"num_cpus": 1, "num_gpus": 1},
strategy=strategy
)