@@ -43,11 +43,7 @@ lemma ContinuousOn_uderiv (hU : IsOpen U) : ContinuousOn uderiv (𝓗 U) := by
43
43
44
44
def 𝓜 (U : Set ℂ) := {f ∈ 𝓗 U | MapsTo f U (closedBall (0 : ℂ) 1 )}
45
45
46
- lemma UniformlyBounded_𝓜 : UniformlyBoundedOn ((↑) : 𝓜 U → ℂ →ᵤ[compacts U] ℂ) U := by
47
- rintro K ⟨hK1, _⟩
48
- refine ⟨1 , zero_lt_one, ?_⟩
49
- rintro z hz x ⟨⟨f, hf⟩, rfl⟩
50
- exact hf.2 (hK1 hz)
46
+ example : 𝓜 U = 𝓕K U (fun _ => closedBall 0 1 ) := 𝓕K_const.symm
51
47
52
48
lemma IsClosed_𝓜 (hU : IsOpen U) : IsClosed (𝓜 U) := by
53
49
suffices : IsClosed {f : ℂ →ᵤ[compacts U] ℂ | MapsTo f U (closedBall 0 1 )}
@@ -58,16 +54,7 @@ lemma IsClosed_𝓜 (hU : IsOpen U) : IsClosed (𝓜 U) := by
58
54
(mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous)
59
55
60
56
lemma IsCompact_𝓜 (hU : IsOpen U) : IsCompact (𝓜 U) := by
61
- have l1 (K) (hK : K ∈ compacts U) : EquicontinuousOn ((↑) : 𝓜 U → ℂ →ᵤ[compacts U] ℂ) K :=
62
- UniformlyBounded_𝓜.equicontinuous_on hU (·.2 .1 ) hK
63
- have l2 : ∀ K ∈ compacts U, ∀ x ∈ K, ∃ Q, IsCompact Q ∧ ∀ (f : 𝓜 U), f.val x ∈ Q := by
64
- intro K hK x hx
65
- refine ⟨closedBall 0 1 , isCompact_of_isClosed_isBounded isClosed_ball isBounded_closedBall, ?_⟩
66
- exact fun f => f.prop.2 (hK.1 hx)
67
- rw [isCompact_iff_compactSpace]
68
- refine ArzelaAscoli.compactSpace_of_closedEmbedding (fun _ hK => hK.2 ) ?_ l1 l2
69
- refine ⟨⟨by tauto, fun f g => Subtype.ext⟩, ?_⟩
70
- simpa [UniformOnFun.ofFun, range] using IsClosed_𝓜 hU
57
+ simpa only [𝓕K_const] using isCompact_𝓕K hU (fun _ _ => isCompact_closedBall 0 1 )
71
58
72
59
-- `𝓘 U` : holomorphic injections into the unit ball
73
60
0 commit comments