diff --git a/build/pkgs/configure/checksums.ini b/build/pkgs/configure/checksums.ini index bdd96db7026..c562e96e67b 100644 --- a/build/pkgs/configure/checksums.ini +++ b/build/pkgs/configure/checksums.ini @@ -1,4 +1,4 @@ tarball=configure-VERSION.tar.gz -sha1=2389d2b093493c568deda190ffc326ff2b835169 -md5=545e80b50deb4efa46f14d0a543ba98f -cksum=169905223 +sha1=551b056e8cb86ab13104ecbba7bc90997bc0c77e +md5=bdde609a711219cff1792bfc88b0e800 +cksum=905198323 diff --git a/build/pkgs/configure/package-version.txt b/build/pkgs/configure/package-version.txt index 033bf42aaae..2773922989d 100644 --- a/build/pkgs/configure/package-version.txt +++ b/build/pkgs/configure/package-version.txt @@ -1 +1 @@ -73e52a419812253c3c3ce72bab7f1a5ddf4c0461 +c5d5e62416fae26e94fa577801ca25c3082adb0e diff --git a/src/sage/matrix/matrix2.pyx b/src/sage/matrix/matrix2.pyx index 4acd46db4de..0c2aa9eda4b 100644 --- a/src/sage/matrix/matrix2.pyx +++ b/src/sage/matrix/matrix2.pyx @@ -216,10 +216,10 @@ cdef class Matrix(Matrix1): from sage.matrix.constructor import matrix if self.is_sparse(): return matrix({ij: self[ij].subs(*args, **kwds) for ij in self.nonzero_positions()}, - nrows=self._nrows, ncols=self._ncols, sparse=True) + nrows=self._nrows, ncols=self._ncols, sparse=True) else: return matrix([a.subs(*args, **kwds) for a in self.list()], - nrows=self._nrows, ncols=self._ncols, sparse=False) + nrows=self._nrows, ncols=self._ncols, sparse=False) def solve_left(self, B, check=True): """ @@ -3183,14 +3183,12 @@ cdef class Matrix(Matrix1): """ # Validate assertions - # if not self.is_square(): raise ValueError("self must be a square matrix") from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing # Extract parameters - # cdef Matrix M = self n = M._ncols R = M._base_ring @@ -3199,7 +3197,6 @@ cdef class Matrix(Matrix1): # Corner cases # N.B. We already tested for M to be square, hence we do not need to # test for 0 x n or m x 0 matrices. - # if n == 0: return S.one() @@ -3215,7 +3212,6 @@ cdef class Matrix(Matrix1): # # N.B. The documentation is still 1-based, although the code, after # having been ported from Magma to Sage, is 0-based. - # from sage.matrix.constructor import matrix F = [R.zero()] * n @@ -3226,18 +3222,15 @@ cdef class Matrix(Matrix1): for t in range(1,n): # Set a(1, t) to be M(<=t, t) - # for i in range(t+1): a.set_unsafe(0, i, M.get_unsafe(i, t)) # Set A[1, t] to be the (t)th entry in a[1, t] - # A[0] = M.get_unsafe(t, t) for p in range(1, t): # Set a(p, t) to the product of M[<=t, <=t] * a(p-1, t) - # for i in range(t+1): s = R.zero() for j in range(t+1): @@ -3245,11 +3238,9 @@ cdef class Matrix(Matrix1): a.set_unsafe(p, i, s) # Set A[p, t] to be the (t)th entry in a[p, t] - # A[p] = a.get_unsafe(p, t) # Set A[t, t] to be M[t, <=t] * a(p-1, t) - # s = R.zero() for j in range(t+1): s = s + M.get_unsafe(t, j) * a.get_unsafe(t-1, j) @@ -3262,7 +3253,7 @@ cdef class Matrix(Matrix1): F[p] = s - A[p] X = S.gen(0) - f = X ** n + S(list(reversed(F))) + f = X**n + S(list(reversed(F))) return f @@ -3634,7 +3625,7 @@ cdef class Matrix(Matrix1): # using the rows of a matrix.) Also see Cohen's first GTM, # Algorithm 2.2.9. - cdef Py_ssize_t i, m, n, + cdef Py_ssize_t i, m, n n = self._nrows cdef Matrix c @@ -18607,8 +18598,8 @@ def _matrix_power_symbolic(A, n): sage: A = matrix(ZZ, [[1,-1], [-1,1]]) sage: A^(2*n+1) # needs sage.symbolic - [ 1/2*2^(2*n + 1) -1/2*2^(2*n + 1)] - [-1/2*2^(2*n + 1) 1/2*2^(2*n + 1)] + [ 1/2*2^(2*n + 1) + 1/2*kronecker_delta(0, 2*n + 1) -1/2*2^(2*n + 1) + 1/2*kronecker_delta(0, 2*n + 1)] + [-1/2*2^(2*n + 1) + 1/2*kronecker_delta(0, 2*n + 1) 1/2*2^(2*n + 1) + 1/2*kronecker_delta(0, 2*n + 1)] Check if :trac:`23215` is fixed:: @@ -18618,12 +18609,25 @@ def _matrix_power_symbolic(A, n): -1/2*I*(a + I*b)^k + 1/2*I*(a - I*b)^k, 1/2*I*(a + I*b)^k - 1/2*I*(a - I*b)^k, 1/2*(a + I*b)^k + 1/2*(a - I*b)^k] + + Check if :trac:`36838` is fixed:Checking symbolic power of + nilpotent matrix:: + + sage: A = matrix([[0,1],[0,0]]); A + [0 1] + [0 0] + sage: n = var('n'); n + n + sage: B = A^n; B + [ kronecker_delta(0, n) n*kronecker_delta(1, n)] + [ 0 kronecker_delta(0, n)] """ from sage.rings.qqbar import AlgebraicNumber from sage.matrix.constructor import matrix from sage.functions.other import binomial from sage.symbolic.ring import SR from sage.rings.qqbar import QQbar + from sage.functions.generalized import kronecker_delta got_SR = A.base_ring() == SR @@ -18656,8 +18660,17 @@ def _matrix_power_symbolic(A, n): # D^i(f) / i! with f = x^n and D = differentiation wrt x if hasattr(mk, 'radical_expression'): mk = mk.radical_expression() - vk = [(binomial(n, i) * mk**(n-i)).simplify_full() - for i in range(nk)] + + + # When the variable "mk" is equal to zero, it is advisable to employ the Kronecker delta function + # instead of utilizing the numerical value zero. This choice is made to encompass scenarios where + # the power of zero is also equal to zero. + if mk: + vk = [(binomial(n, i) * mk._pow_(n-i)).simplify_full() + for i in range(nk)] + else: + vk = [(binomial(n, i).simplify_full() * kronecker_delta(n,i)) + for i in range(nk)] # Form block Mk and insert it in M Mk = matrix(SR, [[SR.zero()]*i + vk[:nk-i] for i in range(nk)])