-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOpechatki_v_Landau_i_Lifshice_tom_4.tex
130 lines (107 loc) · 3.28 KB
/
Opechatki_v_Landau_i_Lifshice_tom_4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\documentclass[russian,english]{article}
\oddsidemargin=-2cm
\usepackage[cp1251]{inputenc}
\usepackage{babel}
\usepackage[dvips]{color}
\begin{document}
\selectlanguage{russian}
%\LARGE
\begin{center}
\begin{tabular}{|p{4cm}|p{7.3cm}|p{7.3cm}|}
\hline
Ïîëîæåíèå & Âìåñòî & Äîëæíî áûòü \\
\hline
&&\\[-1ex]
IV-1989(3), 113, Í:15
& $-i\chi(-\mbox{\textbf r})$
& $-i \textcolor{red}{(-1)^{-l^\prime}} \chi(-\mbox{\textbf r})$
\\
&&\\[-1ex]
IV-1989(3), 114, Í:7
& çíà÷åíèÿ $\textcolor{red}{i} \pm 1/2$ : \dots
& çíà÷åíèÿ $\textcolor{red}{j} \pm 1/2$ : \dots
\\
&&\\[-1ex]
IV-1989(3), 152, Â:2
& \dots â âèäå $\varepsilon \, {\bf \textcolor{red}{p}}_{\mbox{\small øð}} = \hat H
\varphi_{\mbox{\small øð}}$ \dots
& \dots â âèäå $\varepsilon \, \textcolor{red}{\varphi}_{\mbox{\small øð}} = \hat H
\varphi_{\mbox{\small øð}}$ \dots
\\
&&\\[-1ex]
IV-1989(3), 165, (36,15)
& $\left.\begin{array}{l}f\\g\end{array}\right\}
=\textcolor{red}{2^{3/2} \sqrt{\frac{m\pm\varepsilon}{\varepsilon}}} \; e^\frac{\pi\nu}{2}\dots $
& $\left.\begin{array}{l}f\\g\end{array}\right\}
=\textcolor{red}{2^{1/2} \sqrt{\frac{\varepsilon\pm m}{\varepsilon}}} \; e^\frac{\pi\nu}{2}\dots $
\\
&&\\[-1ex]
IV-1989(3), 225, (52,3)
& $\langle n', l-1 || r || n l \rangle = i \sqrt{l}
\frac{(-1)^{n'-\textcolor{red}{1}}}{4(2l-1)!} \dots$
& $\langle n', l-1 || r || n l \rangle = i \sqrt{l}
\frac{(-1)^{n'-\textcolor{red}{l}}}{4(2l-1)!} \dots$
\\
&&\\[-1ex]
IV-1989(3), 225, (52,4)
& $|\langle 2 p || r || n d \rangle |^2 = \frac{2^{\textcolor{red}{19}} n^9
(n^2-1)(n-2)^{2n-7}}{(n+2)^{2n+7}}$
& $|\langle 2 p || r || n d \rangle |^2 = \frac{2^{\textcolor{red}{20}} n^9
(n^2-1)(n-2)^{2n-7}}{(n+2)^{2n+7}}$
\\
&&\\[-1ex]
IV-1989(3), 226, (52,6)
& $\langle n, l-1 || r || n l \rangle = i
\sqrt{l} \cdot \frac{3}{2} \; n \; \sqrt{n^2-l^2}$
& $\langle n, l-1
|| r || n l \rangle = \textcolor{red}{-}i \sqrt{l} \cdot
\frac{3}{2} \; n \; \sqrt{n^2-l^2}$
\\
&&\\[-1ex]
IV-1989(3), 227, (52,9)
& $|\langle n' l' || r || n l \rangle |^2 \sim
\frac{\textcolor{red}{3}}{n'^3}$
& $|\langle n' l' || r || n l \rangle |^2 \sim
\frac{\textcolor{red}{1}}{n'^3}$
\\
&&\\[-1ex]
IV-1989(3), 612, Â:3-4
& \dots ðàçìåð àòîìà ïðîïîðöèîíàëåí $Z e^2$ \dots
& \dots ðàçìåð àòîìà \textcolor{red}{îáðàòíî} ïðîïîðöèîíàëåí $Z e^2$ \dots
\\
&&\\[-1ex]
IV-1989(3), 612, ô-ëà áåç íîìåðà ïîñëå Â:9
& $\langle n l m | \Delta \Phi | n l m \rangle = \dots$
& $\textcolor{red}{e} \, \langle n l m | \Delta \Phi | n l m \rangle =
\dots$
\\
&&\\[-1ex]
IV-1989(3), 614, (124,2)
& $\delta E_{nl} = -\frac{2}{3\pi} \, \alpha^3 m_\mu Z Q_{nl} \left(
\frac{m_e}{Z\alpha m_\mu} \right)$
& $\delta E_{nl} = -\frac{2}{3\pi} \, \alpha^3 m_\mu Z^{\textcolor{red}{2}} Q_{nl} \left(
\frac{m_e}{Z\alpha m_\mu} \right)$
\\
&&\\[-1ex]
IV-1989(3), 615, ô-ëû áåç íîìåðà ïîñëå Â:2
& $\frac{\delta E_{10}}{|E_{10}|}
=
\textcolor{red}{-6,4 \cdot 10^{-3}} \;,
\quad
\frac{\delta E_{20}}{|E_{20}|}
=
\textcolor{red}{-2,8 \cdot 10^{-4}} \;,
\dots$
& $\frac{\delta E_{10}}{|E_{10}|}
=
\textcolor{red}{-8,4 \cdot 10^{-4}} \;,
\quad
\frac{\delta E_{20}}{|E_{20}|}
=
\textcolor{red}{-4,0 \cdot 10^{-4}} \;,
\dots$
\\
\hline
\end{tabular}
\end{center}
\end{document}