-
Notifications
You must be signed in to change notification settings - Fork 3
/
facedetect.py
executable file
·141 lines (116 loc) · 4.75 KB
/
facedetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/python
"""
This program is demonstration for face and object detection using haar-like features.
The program finds faces in a camera image or video stream and displays a red box around them.
Original C implementation by: ?
Python implementation by: Roman Stanchak, James Bowman
"""
import sys
import cv2.cv as cv
from optparse import OptionParser
import os
# Parameters for haar detection
# From the API:
# The default parameters (scale_factor=2, min_neighbors=3, flags=0) are tuned
# for accurate yet slow object detection. For a faster operation on real video
# images the settings are:
# scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING,
# min_size=<minimum possible face size
min_size = (20, 20)
image_scale = 2
haar_scale = 1.2
min_neighbors = 2
haar_flags = 0
def map(value, leftMin, leftMax, rightMin, rightMax):
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
valueScaled = float(value - leftMin) / float(leftSpan)
return rightMin + (valueScaled * rightSpan)
def detect_and_draw(img, cascade, detected):
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1)
# convert color input image to grayscale
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
cv.EqualizeHist(small_img, small_img)
if(cascade):
t = cv.GetTickCount()
faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size)
t = cv.GetTickCount() - t
#print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
if faces:
if detected == 0:
os.system('festival --tts hi &')
detected = 1
for ((x, y, w, h), n) in faces:
# the input to cv.HaarDetectObjects was resized, so scale the
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
span = (pt1[0] + pt2[0]) / 2
stlt = (pt1[1] + pt2[1]) / 2
#valPan = map(span, 0, 320, 0.09, 0.18)
#valTilt = map(stlt, 0, 240, 0.09, 0.18)
valPan = map(span, 0, 320, 0.11, 0.15)
valTilt = map(stlt, 0, 240, 0.10, 0.14)
#print valPan, valTilt
print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
os.system('echo "6="' + str(valTilt) + ' > /dev/pi-blaster')
os.system('echo "7="' + str(valPan) + ' > /dev/pi-blaster')
else:
if detected == 1:
#print "Last seen at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
os.system('festival --tts bye &')
detected = 0
cv.ShowImage("result", img)
return detected
if __name__ == '__main__':
parser = OptionParser(usage = "usage: %prog [options] [filename|camera_index]")
parser.add_option("-c", "--cascade", action="store", dest="cascade", type="str", help="Haar cascade file, default %default", default = "../data/haarcascades/haarcascade_frontalface_alt.xml")
(options, args) = parser.parse_args()
cascade = cv.Load(options.cascade)
if len(args) != 1:
parser.print_help()
sys.exit(1)
input_name = args[0]
if input_name.isdigit():
capture = cv.CreateCameraCapture(int(input_name))
else:
capture = None
cv.NamedWindow("result", 1)
width = 320 #leave None for auto-detection
height = 240 #leave None for auto-detection
if width is None:
width = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH))
else:
cv.SetCaptureProperty(capture,cv.CV_CAP_PROP_FRAME_WIDTH,width)
if height is None:
height = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))
else:
cv.SetCaptureProperty(capture,cv.CV_CAP_PROP_FRAME_HEIGHT,height)
if capture:
detected = 0
frame_copy = None
while True:
frame = cv.QueryFrame(capture)
if not frame:
cv.WaitKey(0)
break
if not frame_copy:
frame_copy = cv.CreateImage((frame.width,frame.height), cv.IPL_DEPTH_8U, frame.nChannels)
if frame.origin == cv.IPL_ORIGIN_TL:
cv.Copy(frame, frame_copy)
else:
cv.Flip(frame, frame_copy, 0)
detected = detect_and_draw(frame_copy, cascade, detected)
if cv.WaitKey(10) >= 0:
break
else:
image = cv.LoadImage(input_name, 1)
detect_and_draw(image, cascade, detected)
print "Inside the man else"
cv.WaitKey(0)
cv.DestroyWindow("result")