-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinreg.py
38 lines (29 loc) · 1.36 KB
/
linreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib.pyplot as plt
import numpy as np
my_data = np.genfromtxt('data.csv', delimiter=',') # read the data
X = my_data[:, 0].reshape(-1,1) # -1 tells numpy to figure out the dimension by itself
ones = np.ones([X.shape[0], 1]) # create a array containing only ones
X = np.concatenate([ones, X],1) # cocatenate the ones to X matrix
y = my_data[:, 1].reshape(-1,1) # create the y matrix
plt.scatter(my_data[:, 0].reshape(-1,1), y)
# notice small alpha value
alpha = 0.0001
iters = 1000
# theta is a row vector
theta = np.array([[1.0, 1.0]])
def computeCost(X, y, theta):
inner = np.power(((X @ theta.T) - y), 2) # @ means matrix multiplication of arrays. If we want to use * for multiplication we will have to convert all arrays to matrices
return np.sum(inner) / (2 * len(X))
computeCost(X, y, theta) # outputs 319.40631589398157
def gradientDescent(X, y, theta, alpha, iters):
for i in range(iters):
theta = theta - (alpha/len(X)) * np.sum((X @ theta.T - y) * X, axis=0)
cost = computeCost(X, y, theta)
# if i % 10 == 0: # just look at cost every ten loops for debugging
# print(cost)
return (theta, cost)
plt.scatter(my_data[:, 0].reshape(-1,1), y)
axes = plt.gca()
x_vals = np.array(axes.get_xlim())
y_vals = g[0][0] + g[0][1]* x_vals #the line equation
plt.plot(x_vals, y_vals, '--')