-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinregsk.py
39 lines (24 loc) · 988 Bytes
/
linregsk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model
from sklearn.metrics import mean_squared_error,r2_score,accuracy_score
diabetes=datasets.load_diabetes()
#print(diabetes)
#use only one feature
diabetes_X=diabetes.data[:,np.newaxis,2]
print(diabetes_X)
diabetes_X_train=diabetes_X[:-20]
diabetes_X_test=diabetes_X[-20:]
diabetes_y_train=diabetes.target[:-20]
diabetes_y_test=diabetes.target[-20:]
regr=linear_model.LinearRegression()
regr.fit(diabetes_X_train,diabetes_y_train)
diabetes_y_pred=regr.predict(diabetes_X_test)
print('Coefficients: \n',regr.coef_)
print("Mean Squared Error: %.2f" % mean_squared_error(diabetes_y_test,diabetes_y_pred))
print('Variance score : %.2f' % r2_score(diabetes_y_test,diabetes_y_pred))
plt.scatter(diabetes_X_test,diabetes_y_test,color='black')
plt.plot(diabetes_X_test,diabetes_y_pred,color='blue',linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()