You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Scatter and bubble plots are also useful for identifying patterns in your data. Note, however, that these methods don't use aggregations; VerticaPy downsamples the data before plotting. You can use the 'max_nb_points' to limit the number of points and avoid unnecessary memory usage.
248
+
Scatter and bubble plots are also useful for identifying patterns in your data. Note, however, that these methods don't use aggregations; VerticaPy downsamples the data before plotting. You can use the `max_nb_points` to limit the number of points and avoid unnecessary memory usage.
246
249
247
250
.. code-block::
248
251
@@ -323,8 +326,10 @@ For more information on scatter look at :py:mod:`verticapy.vDataFrame.scatter`.
323
326
Hexbin plots can be useful for generating heatmaps. These summarize data in a similar way to scatter plots, but compute aggregations to get the final results.
When the file to ingest is not located on your local machine, and is on the server instead, then you must set the `ingest_local` parameter to False.
114
+
114
115
`ingest_local` is True by default.
115
116
116
117
.. note:: In some cases where the CSV file has a very complex structure, local ingestion might fail. If this occurs, you will have to move the file into the database and then ingest the file from that location.
@@ -130,8 +131,7 @@ syntax in the path parameter (in this case for multiple CSV files): `path = "pat
130
131
Ingest CSV files
131
132
----------------
132
133
133
-
In addition to :py:func:`~verticapy.read_file`, you can also ingest CSV files with the :py:func:`~verticapy.read_csv` function,
134
-
which ingests the file using flex tables. This function provides options not available in :py:func:`~verticapy.read_file`, such as:
134
+
In addition to :py:func:`~verticapy.read_file`, you can also ingest CSV files with the :py:func:`~verticapy.read_csv` function, which ingests the file using flex tables. This function provides options not available in :py:func:`~verticapy.read_file`, such as:
135
135
136
136
- `sep`: specify the column separator.
137
137
- `parse_nrows`: the function creates a file of nrows from the data file to identify
@@ -140,18 +140,15 @@ the data types. This file is then dropped and the entire data file is ingested.
140
140
141
141
For a full list of supported options, see :py:func:`~verticapy.read_csv` or use the :py:func:`~verticapy.help` function.
142
142
143
-
In the following example, we will use :py:func:`~verticapy.read_csv` to ingest a
144
-
subset of the Titanic dataset. To begin, load the entire Titanic dataset using the
In the following example, we will use :py:func:`~verticapy.read_csv` to ingest a subset of the Titanic dataset. To begin, load the entire Titanic dataset using the :py:func:`~verticapy.datasets.load_titanic` function:
146
144
147
145
.. ipython:: python
148
146
149
147
from verticapy.datasets import load_titanic
150
148
151
149
titanic = load_titanic()
152
150
153
-
To convert a subset of the dataset to a CSV file, select the desired rows in
154
-
the dataset and use the :py:func:`~verticapy.to_csv` vDataFrame method:
151
+
To convert a subset of the dataset to a CSV file, select the desired rows in the dataset and use the :py:func:`~verticapy.to_csv` ``vDataFrame`` method:
155
152
156
153
.. ipython:: python
157
154
@@ -163,7 +160,8 @@ Before ingesting the above CSV file, we can check its columns and their data typ
163
160
164
161
.. ipython:: python
165
162
166
-
vp.pcsv(path="titanic_subset.csv",
163
+
vp.pcsv(
164
+
path="titanic_subset.csv",
167
165
sep=",",
168
166
na_rep="",
169
167
)
@@ -212,8 +210,7 @@ For a full list of supported options, see the :py:func:`~verticapy.read_json` or
212
210
213
211
VerticaPy also provides a :py:func:`~verticapy.pjson` function to parse JSON files to identify columns and their respective data types.
214
212
215
-
In the following example, we load the iris dataset using the :py:func:`~verticapy.datasets.load_iris` dataset,
216
-
convert the vDataFrame to JSON format with the :py:func:`~verticapy.to_json` method, then ingest the JSON file into Vetica:
213
+
In the following example, we load the iris dataset using the :py:func:`~verticapy.datasets.load_iris` dataset, convert the vDataFrame to JSON format with the :py:func:`~verticapy.to_json` method, then ingest the JSON file into Vetica:
0 commit comments