diff --git a/LICENSE.txt b/LICENSE.txt
index e8616ff3e..7c661a9d0 100644
--- a/LICENSE.txt
+++ b/LICENSE.txt
@@ -186,7 +186,7 @@
same "printed page" as the copyright notice for easier
identification within third-party archives.
- Copyright [2018] Microfocus
+ Copyright [2018-2025] Open Text
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
diff --git a/README.md b/README.md
index 2730c9b00..eeb5c2146 100755
--- a/README.md
+++ b/README.md
@@ -243,7 +243,7 @@ selected_titanic.groupby(columns=["pclass"], expr=["AVG(AVG)"])
### Charts
-Verticapy comes integrated with three popular plotting libraries: matplotlib, highcharts, and plotly.
+VerticaPy comes integrated with three popular plotting libraries: matplotlib, highcharts, and plotly.
A gallery of VerticaPy-generated charts is available at:
@@ -367,7 +367,7 @@ set_option("sql_on", True)
```sql
SELECT
- /*+LABEL('vDataframe._aggregate_matrix')*/ CORR_MATRIX("pclass", "survived", "age", "sibsp", "parch", "fare", "body") OVER ()
+ /*+LABEL('vDataFrame._aggregate_matrix')*/ CORR_MATRIX("pclass", "survived", "age", "sibsp", "parch", "fare", "body") OVER ()
FROM
(
SELECT
diff --git a/docs/source/contribution_guidelines_code_auto_doc.rst b/docs/source/contribution_guidelines_code_auto_doc.rst
index 7ce2f30a6..a08071a1d 100644
--- a/docs/source/contribution_guidelines_code_auto_doc.rst
+++ b/docs/source/contribution_guidelines_code_auto_doc.rst
@@ -73,7 +73,7 @@ Install the requirements by:
-Install Verticapy from the setup file using below in the VerticaPy directory
+Install VerticaPy from the setup file using below in the VerticaPy directory
.. code-block::
diff --git a/docs/source/index.rst b/docs/source/index.rst
index cf5bd048f..cf196d3f4 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -43,7 +43,7 @@ Vertica database using the Python programming language. Vertica is a high-perfor
:class-card: custom-card-2
:class-img-top: custom-class-img-top
- Quick and easy guide to help you install Verticapy.
+ Quick and easy guide to help you install VerticaPy.
+++
Install VerticaPy
diff --git a/docs/source/pipeline.rst b/docs/source/pipeline.rst
index b3944c812..36b8e3d11 100755
--- a/docs/source/pipeline.rst
+++ b/docs/source/pipeline.rst
@@ -16,7 +16,7 @@ To begin, you must:
* Have access to a machine that has Vertica installed
* Install Python on your machine
-* Install Verticapy
+* Install VerticaPy
Create Your First YAML files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -30,7 +30,7 @@ Create Your First YAML files
- the files should have **.yaml** as the extension,
- YAML does not allow the use of tabs while creating YAML files
-The information in connection.yaml will be the same you use in Verticapy.
+The information in connection.yaml will be the same you use in VerticaPy.
.. code:: bash
diff --git a/docs/source/user_guide_full_stack_dblink_integration.rst b/docs/source/user_guide_full_stack_dblink_integration.rst
index 6186b9d7b..776679b4b 100644
--- a/docs/source/user_guide_full_stack_dblink_integration.rst
+++ b/docs/source/user_guide_full_stack_dblink_integration.rst
@@ -189,7 +189,7 @@ Let's try an example with the :py:func:`~verticapy.vDataFrame.describe` function
-- Computing the descriptive statistics of all numerical columns using SUMMARIZE_NUMCOL
SELECT
- /*+LABEL('vDataframe.describe')*/ SUMMARIZE_NUMCOL("LATITUDE", "LONGITUDE") OVER ()
+ /*+LABEL('vDataFrame.describe')*/ SUMMARIZE_NUMCOL("LATITUDE", "LONGITUDE") OVER ()
FROM (
SELECT
"IATA_CODE",
@@ -676,7 +676,7 @@ We can now perform the same query involving the three tables:
Conclusion
-----------
-With the combination of Verticapy and ``DBLINK``, we can now work with multiple datasets stored in different databases. We can work simultaneously with external tables, Vertica tables, and Pandas DataFrame in a **single query**! There is no need to materialize the table before use because it's all taken care of in the background.
+With the combination of VerticaPy and ``DBLINK``, we can now work with multiple datasets stored in different databases. We can work simultaneously with external tables, Vertica tables, and Pandas DataFrame in a **single query**! There is no need to materialize the table before use because it's all taken care of in the background.
The cherry on the cake is the ease-of-use that is enabled by VerticaPy and its Python-like syntax.
diff --git a/docs/source/user_guide_introduction_vdf.rst b/docs/source/user_guide_introduction_vdf.rst
index 6b9230017..f9364b766 100644
--- a/docs/source/user_guide_introduction_vdf.rst
+++ b/docs/source/user_guide_introduction_vdf.rst
@@ -237,7 +237,7 @@ We can also view the vDataFrame's backend SQL code generation by setting the ``s
-- Computing the different aggregations
SELECT
- /*+LABEL('vDataframe.aggregate')*/
+ /*+LABEL('vDataFrame.aggregate')*/
APPROXIMATE_COUNT_DISTINCT("cnt")
FROM (
SELECT
@@ -268,7 +268,7 @@ We can also view the vDataFrame's backend SQL code generation by setting the ``s
-- Computing the descriptive statistics of all numerical columns using SUMMARIZE_NUMCOL
SELECT
- /*+LABEL('vDataframe.describe')*/
+ /*+LABEL('vDataFrame.describe')*/
SUMMARIZE_NUMCOL("cnt") OVER ()
FROM (
SELECT
diff --git a/examples/learn/titanic/titanic.ipynb b/examples/learn/titanic/titanic.ipynb
index 7a870456e..1cb7b89b9 100644
--- a/examples/learn/titanic/titanic.ipynb
+++ b/examples/learn/titanic/titanic.ipynb
@@ -3177,7 +3177,7 @@
{
"data": {
"text/html": [
- " SELECT
/*+LABEL('vDataframe.aggregate')*/ 2.28444084278768,
0.364667747163695,
AVG(\"sex\"),
AVG(\"age\"),
0.504051863857374,
0.378444084278768,
AVG(\"fare\"),
0.355753646677472,
AVG(\"family_size\")
FROM
(
SELECT
\"pclass\",
\"survived\",
\"name\",
\"sex\",
COALESCE(\"age\", AVG(\"age\") OVER (PARTITION BY \"pclass\", \"sex\")) AS \"age\",
\"sibsp\",
\"parch\",
\"fare\",
\"boat\",
\"family_size\"
FROM
(
SELECT
\"pclass\",
\"survived\",
REGEXP_SUBSTR(\"name\", ' ([A-Za-z]+)\\.') AS \"name\",
DECODE(\"sex\", 'female', 0, 'male', 1, 2) AS \"sex\",
\"age\",
\"sibsp\",
\"parch\",
(CASE WHEN \"fare\" < -176.6204982585513 THEN -176.6204982585513 WHEN \"fare\" > 244.5480856064831 THEN 244.5480856064831 ELSE \"fare\" END) AS \"fare\",
DECODE(\"boat\", NULL, 0, 1) AS \"boat\",
((\"parch\") + (\"sibsp\")) + (1) AS \"family_size\"
FROM
(
SELECT
\"pclass\",
\"survived\",
\"name\",
\"sex\",
\"age\",
\"sibsp\",
\"parch\",
\"fare\",
\"boat\"
FROM
\"public\".\"titanic\")
VERTICAPY_SUBTABLE)
VERTICAPY_SUBTABLE)
VERTICAPY_SUBTABLE
LIMIT 1"
+ " SELECT
/*+LABEL('vDataFrame.aggregate')*/ 2.28444084278768,
0.364667747163695,
AVG(\"sex\"),
AVG(\"age\"),
0.504051863857374,
0.378444084278768,
AVG(\"fare\"),
0.355753646677472,
AVG(\"family_size\")
FROM
(
SELECT
\"pclass\",
\"survived\",
\"name\",
\"sex\",
COALESCE(\"age\", AVG(\"age\") OVER (PARTITION BY \"pclass\", \"sex\")) AS \"age\",
\"sibsp\",
\"parch\",
\"fare\",
\"boat\",
\"family_size\"
FROM
(
SELECT
\"pclass\",
\"survived\",
REGEXP_SUBSTR(\"name\", ' ([A-Za-z]+)\\.') AS \"name\",
DECODE(\"sex\", 'female', 0, 'male', 1, 2) AS \"sex\",
\"age\",
\"sibsp\",
\"parch\",
(CASE WHEN \"fare\" < -176.6204982585513 THEN -176.6204982585513 WHEN \"fare\" > 244.5480856064831 THEN 244.5480856064831 ELSE \"fare\" END) AS \"fare\",
DECODE(\"boat\", NULL, 0, 1) AS \"boat\",
((\"parch\") + (\"sibsp\")) + (1) AS \"family_size\"
FROM
(
SELECT
\"pclass\",
\"survived\",
\"name\",
\"sex\",
\"age\",
\"sibsp\",
\"parch\",
\"fare\",
\"boat\"
FROM
\"public\".\"titanic\")
VERTICAPY_SUBTABLE)
VERTICAPY_SUBTABLE)
VERTICAPY_SUBTABLE
LIMIT 1"
],
"text/plain": [
""
@@ -3258,7 +3258,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Let's move on to modeling our data. Save the vDataframe to your Vertica database."
+ "Let's move on to modeling our data. Save the vDataFrame to your Vertica database."
]
},
{
diff --git a/verticapy/_config/config.py b/verticapy/_config/config.py
index f62ec1b9a..6401c474b 100755
--- a/verticapy/_config/config.py
+++ b/verticapy/_config/config.py
@@ -602,7 +602,7 @@ def set_option(key: str, value: Any = None) -> None:
**Computing the different aggregations**.
- SELECT /*+LABEL('vDataframe.aggregate')*/ MAX("age") FROM "public"."titanic" LIMIT 1
+ SELECT /*+LABEL('vDataFrame.aggregate')*/ MAX("age") FROM "public"."titanic" LIMIT 1
**Execution**: 0.072s
diff --git a/verticapy/core/vdataframe/_aggregate.py b/verticapy/core/vdataframe/_aggregate.py
index 48494e9a0..a05c51d16 100755
--- a/verticapy/core/vdataframe/_aggregate.py
+++ b/verticapy/core/vdataframe/_aggregate.py
@@ -592,7 +592,7 @@ def aggregate(
res = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.aggregate')*/
+ /*+LABEL('vDataFrame.aggregate')*/
{", ".join([str(item) for sublist in agg for item in sublist])}""",
print_time_sql=False,
method="fetchrow",
@@ -601,7 +601,7 @@ def aggregate(
res = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.aggregate')*/
+ /*+LABEL('vDataFrame.aggregate')*/
{", ".join([str(item) for sublist in agg for item in sublist])}
FROM {self}
LIMIT 1""",
@@ -642,7 +642,7 @@ def aggregate(
query = f"""
WITH vdf_table AS
(SELECT
- /*+LABEL('vDataframe.aggregate')*/ *
+ /*+LABEL('vDataFrame.aggregate')*/ *
FROM {self}) {query}"""
if nb_precomputed == len(func) * len(columns):
result = _executeSQL(query, print_time_sql=False, method="fetchall")
@@ -674,7 +674,7 @@ def aggregate(
_executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.aggregate')*/
+ /*+LABEL('vDataFrame.aggregate')*/
{columns_str}
FROM {self}""",
title=(
@@ -702,7 +702,7 @@ def aggregate(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.aggregate')*/
+ /*+LABEL('vDataFrame.aggregate')*/
{agg_fun}
FROM {self}""",
title=(
@@ -1043,7 +1043,7 @@ def describe(
query_result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.describe')*/
+ /*+LABEL('vDataFrame.describe')*/
SUMMARIZE_NUMCOL({cols_to_compute_str}) OVER ()
FROM {self}""",
title=(
@@ -3418,7 +3418,7 @@ def duplicated(
total = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.duplicated')*/ COUNT(*)
+ /*+LABEL('vDataFrame.duplicated')*/ COUNT(*)
FROM {main_table}""",
title="Computing the number of duplicates.",
method="fetchfirstelem",
@@ -3440,7 +3440,7 @@ def duplicated(
result.count = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.duplicated')*/ COUNT(*)
+ /*+LABEL('vDataFrame.duplicated')*/ COUNT(*)
FROM
(SELECT
{columns},
diff --git a/verticapy/core/vdataframe/_corr.py b/verticapy/core/vdataframe/_corr.py
index 71d7368be..27f0b54e6 100755
--- a/verticapy/core/vdataframe/_corr.py
+++ b/verticapy/core/vdataframe/_corr.py
@@ -107,7 +107,7 @@ def _aggregate_matrix(
"""
query = f"""
SELECT
- /*+LABEL('vDataframe._aggregate_matrix')*/
+ /*+LABEL('vDataFrame._aggregate_matrix')*/
CORR({columns[0]}{cast_0}, {columns[1]}{cast_1})
FROM {table}"""
title = (
@@ -147,7 +147,7 @@ def _aggregate_matrix(
return np.nan
query = f"""
SELECT
- /*+LABEL('vDataframe._aggregate_matrix')*/
+ /*+LABEL('vDataFrame._aggregate_matrix')*/
(AVG(DECODE({column_b}{cast_b}, 1,
{column_n}{cast_n}, NULL))
- AVG(DECODE({column_b}{cast_b}, 0,
@@ -168,7 +168,7 @@ def _aggregate_matrix(
return 1
n, k, r = _executeSQL(
query=f"""
- SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
+ SELECT /*+LABEL('vDataFrame._aggregate_matrix')*/
COUNT(*) AS n,
COUNT(DISTINCT {columns[0]}) AS k,
COUNT(DISTINCT {columns[1]}) AS r
@@ -257,7 +257,7 @@ def _aggregate_matrix(
n_0 = f"{n_} * ({n_} - 1)/2"
tau_b = f"({n_c} - {n_d}) / sqrt(({n_0} - {n_1}) * ({n_0} - {n_2}))"
query = f"""
- SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
+ SELECT /*+LABEL('vDataFrame._aggregate_matrix')*/
{tau_b}
FROM
(SELECT
@@ -272,7 +272,7 @@ def _aggregate_matrix(
title = f"Computing the kendall correlation between {columns[0]} and {columns[1]}."
elif method == "cov":
query = f"""
- SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
+ SELECT /*+LABEL('vDataFrame._aggregate_matrix')*/
COVAR_POP({columns[0]}{cast_0}, {columns[1]}{cast_1})
FROM {self}"""
title = (
@@ -328,7 +328,7 @@ def _aggregate_matrix(
)
table = f"(SELECT {columns_str} FROM {self}) spearman_table"
result = _executeSQL(
- query=f"""SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
+ query=f"""SELECT /*+LABEL('vDataFrame._aggregate_matrix')*/
CORR_MATRIX({', '.join(columns)})
OVER ()
FROM {table}""",
@@ -441,7 +441,7 @@ def _aggregate_matrix(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe._aggregate_matrix')*/
+ /*+LABEL('vDataFrame._aggregate_matrix')*/
{', '.join(all_list)}""",
print_time_sql=False,
method="fetchrow",
@@ -450,7 +450,7 @@ def _aggregate_matrix(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe._aggregate_matrix')*/
+ /*+LABEL('vDataFrame._aggregate_matrix')*/
{', '.join(all_list)}
FROM {table}""",
title=title,
@@ -657,7 +657,7 @@ def _aggregate_vector(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe._aggregate_vector')*/
+ /*+LABEL('vDataFrame._aggregate_vector')*/
{', '.join(all_list)}""",
method="fetchrow",
print_time_sql=False,
@@ -666,7 +666,7 @@ def _aggregate_vector(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe._aggregate_vector')*/
+ /*+LABEL('vDataFrame._aggregate_vector')*/
{', '.join(all_list)}
FROM {table}
LIMIT 1""",
@@ -1028,7 +1028,7 @@ def corr_pvalue(
val = self.corr(columns=[column1, column2], method=method)
sql = f"""
SELECT
- /*+LABEL('vDataframe.corr_pvalue')*/ COUNT(*)
+ /*+LABEL('vDataFrame.corr_pvalue')*/ COUNT(*)
FROM {self}
WHERE {column1} IS NOT NULL AND {column2} IS NOT NULL;"""
n = _executeSQL(
@@ -1076,7 +1076,7 @@ def corr_pvalue(
nc, nd = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.corr_pvalue')*/
+ /*+LABEL('vDataFrame.corr_pvalue')*/
{n_c}::float,
{n_d}::float
FROM {table};""",
@@ -1092,7 +1092,7 @@ def corr_pvalue(
vt, v1_0, v2_0 = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.corr_pvalue')*/
+ /*+LABEL('vDataFrame.corr_pvalue')*/
SUM(ni * (ni - 1) * (2 * ni + 5)),
SUM(ni * (ni - 1)),
SUM(ni * (ni - 1) * (ni - 2))
@@ -1110,7 +1110,7 @@ def corr_pvalue(
vu, v1_1, v2_1 = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.corr_pvalue')*/
+ /*+LABEL('vDataFrame.corr_pvalue')*/
SUM(ni * (ni - 1) * (2 * ni + 5)),
SUM(ni * (ni - 1)),
SUM(ni * (ni - 1) * (ni - 2))
@@ -1132,7 +1132,7 @@ def corr_pvalue(
if kendall_type == "c":
k, r = _executeSQL(
query=f"""
- SELECT /*+LABEL('vDataframe.corr_pvalue')*/
+ SELECT /*+LABEL('vDataFrame.corr_pvalue')*/
APPROXIMATE_COUNT_DISTINCT({column1}) AS k,
APPROXIMATE_COUNT_DISTINCT({column2}) AS r
FROM {self}
@@ -1149,7 +1149,7 @@ def corr_pvalue(
elif method == "cramer":
k, r = _executeSQL(
query=f"""
- SELECT /*+LABEL('vDataframe.corr_pvalue')*/
+ SELECT /*+LABEL('vDataFrame.corr_pvalue')*/
COUNT(DISTINCT {column1}) AS k,
COUNT(DISTINCT {column2}) AS r
FROM {self}
@@ -1541,7 +1541,7 @@ def regr(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.regr')*/
+ /*+LABEL('vDataFrame.regr')*/
{", ".join(all_list)}""",
print_time_sql=False,
method="fetchrow",
@@ -1550,7 +1550,7 @@ def regr(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.regr')*/
+ /*+LABEL('vDataFrame.regr')*/
{", ".join(all_list)}
FROM {self}""",
title=f"Computing the {method.upper()} Matrix.",
@@ -1569,7 +1569,7 @@ def regr(
_executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.regr')*/
+ /*+LABEL('vDataFrame.regr')*/
{method.upper()}({columns[i]}{cast_i},
{columns[j]}{cast_j})
FROM {self}""",
@@ -2050,7 +2050,7 @@ def pacf(
drop(tmp_view_name, method="view")
query = f"""
CREATE VIEW {tmp_view_name}
- AS SELECT /*+LABEL('vDataframe.pacf')*/ * FROM {relation}"""
+ AS SELECT /*+LABEL('vDataFrame.pacf')*/ * FROM {relation}"""
_executeSQL(query, print_time_sql=False)
vdf = create_new_vdf(tmp_view_name)
model = vml.LinearRegression(solver="newton")
diff --git a/verticapy/core/vdataframe/_encoding.py b/verticapy/core/vdataframe/_encoding.py
index 70f9ee734..d586a17c5 100755
--- a/verticapy/core/vdataframe/_encoding.py
+++ b/verticapy/core/vdataframe/_encoding.py
@@ -268,7 +268,7 @@ def one_hot_encode(
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_encoding_ohe1.html
- Let's apply encoding on all the vcolumns of the datasets
+ Let's apply encoding on all the vDataColumns of the datasets
.. code-block:: python
@@ -285,7 +285,7 @@ def one_hot_encode(
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_encoding_ohe2.html
- Let's apply encoding on two specific vcolumns viz. "pclass" and "embarked"
+ Let's apply encoding on two specific vDataColumns viz. "pclass" and "embarked"
.. code-block:: python
@@ -444,7 +444,7 @@ def cut(
data = vpd.load_titanic()
- Let's look at "age" vcolumn
+ Let's look at "age" vDataColumn
.. code-block:: python
@@ -714,7 +714,7 @@ def decode(self, *args) -> "vDataFrame":
data = vpd.load_titanic()
- Let's encode "sex" vcolumn and represent "female" category as 1 and
+ Let's encode "sex" vDataColumn and represent "female" category as 1 and
"male" category as 0.
.. code-block:: python
@@ -861,7 +861,7 @@ def discretize(
data = vpd.load_titanic()
- Let's look at "age" vcolumn
+ Let's look at "age" vDataColumn
.. code-block:: python
@@ -1292,7 +1292,7 @@ def one_hot_encode(
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_encoding_ohe1.html
- Let's apply encoding on "embarked" vcolumn.
+ Let's apply encoding on "embarked" vDataColumn.
.. code-block:: python
@@ -1465,7 +1465,7 @@ def label_encode(self) -> "vDataFrame":
data = vpd.load_titanic()
- Let's encode "embarked" vcolumn
+ Let's encode "embarked" vDataColumn
.. code-block:: python
@@ -1602,7 +1602,7 @@ def mean_encode(self, response: str) -> "vDataFrame":
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_encoding_mean_encode1.html
Let's apply mean encoding which will replace each category of
- "embarked" vcolumn by the average of the response
+ "embarked" vDataColumn by the average of the response
.. code-block:: python
diff --git a/verticapy/core/vdataframe/_filter.py b/verticapy/core/vdataframe/_filter.py
index 39826d074..c29613a56 100755
--- a/verticapy/core/vdataframe/_filter.py
+++ b/verticapy/core/vdataframe/_filter.py
@@ -1168,7 +1168,7 @@ def filter(
new_count = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.filter')*/
+ /*+LABEL('vDataFrame.filter')*/
COUNT(*)
FROM {self}""",
title="Computing the new number of elements.",
@@ -1319,7 +1319,7 @@ def first(self, ts: str, offset: str) -> "vDataFrame":
first_date = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.first')*/
+ /*+LABEL('vDataFrame.first')*/
(MIN({ts}) + '{offset}'::interval)::varchar
FROM {self}""",
title="Getting the vDataFrame first values.",
@@ -1561,7 +1561,7 @@ def last(self, ts: str, offset: str) -> "vDataFrame":
last_date = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.last')*/
+ /*+LABEL('vDataFrame.last')*/
(MAX({ts}) - '{offset}'::interval)::varchar
FROM {self}""",
title="Getting the vDataFrame last values.",
diff --git a/verticapy/core/vdataframe/_io.py b/verticapy/core/vdataframe/_io.py
index 43ffe2195..f9c1dcb62 100755
--- a/verticapy/core/vdataframe/_io.py
+++ b/verticapy/core/vdataframe/_io.py
@@ -221,7 +221,7 @@ def load(self, offset: int = -1) -> "vDataFrame":
data.save()
Let's perform some operations on the
- ``vDataframe``.
+ ``vDataFrame``.
.. code-block:: python
@@ -351,7 +351,7 @@ def save(self) -> "vDataFrame":
data.save()
Let's perform some operations on the
- ``vDataframe``.
+ ``vDataFrame``.
.. code-block:: python
@@ -638,7 +638,7 @@ def to_csv(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.to_csv')*/
+ /*+LABEL('vDataFrame.to_csv')*/
{', '.join(columns)}
FROM {self}
{order_by}
@@ -1005,7 +1005,7 @@ def to_db(
{name}{commit}
AS
SELECT
- /*+LABEL('vDataframe.to_db')*/
+ /*+LABEL('vDataFrame.to_db')*/
{select}{nb_split}
FROM {self}
{db_filter}
@@ -1160,7 +1160,7 @@ def to_geopandas(self, geometry: str) -> "GeoDataFrame":
columns = ", ".join(columns + [f"ST_AsText({geometry}) AS {geometry}"])
query = f"""
SELECT
- /*+LABEL('vDataframe.to_geopandas')*/ {columns}
+ /*+LABEL('vDataFrame.to_geopandas')*/ {columns}
FROM {self}
{self._get_last_order_by()}"""
data = _executeSQL(
@@ -1373,7 +1373,7 @@ def to_json(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.to_json')*/
+ /*+LABEL('vDataFrame.to_json')*/
{', '.join(transformations)}
FROM {self}
{order_by}
@@ -1507,7 +1507,7 @@ def to_list(self) -> list:
res = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.to_list')*/ *
+ /*+LABEL('vDataFrame.to_list')*/ *
FROM {self}
{self._get_last_order_by()}""",
title="Getting the vDataFrame values.",
@@ -1725,7 +1725,7 @@ def to_pandas(self) -> pd.DataFrame:
data = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.to_pandas')*/ *
+ /*+LABEL('vDataFrame.to_pandas')*/ *
FROM {self}{self._get_last_order_by()}""",
title="Getting the vDataFrame values.",
method="fetchall",
@@ -1909,7 +1909,7 @@ def to_parquet(
.. note::
- It will export vDataframe to parquet
+ It will export vDataFrame to parquet
file at provided directory.
.. seealso::
@@ -2029,7 +2029,7 @@ def to_pickle(self, name: str) -> "vDataFrame":
data.to_pickle("vdf_data.p")
- Let's unpickle the vDataframe from Python
+ Let's unpickle the vDataFrame from Python
pickle file and view it.
.. code-block:: python
@@ -2200,7 +2200,7 @@ def to_shp(
usecols = format_type(usecols, dtype=list)
query = f"""
SELECT
- /*+LABEL('vDataframe.to_shp')*/
+ /*+LABEL('vDataFrame.to_shp')*/
STV_SetExportShapefileDirectory(
USING PARAMETERS path = '{path}');"""
_executeSQL(query=query, title="Setting SHP Export directory.")
@@ -2208,7 +2208,7 @@ def to_shp(
columns = ", ".join(columns)
query = f"""
SELECT
- /*+LABEL('vDataframe.to_shp')*/
+ /*+LABEL('vDataFrame.to_shp')*/
STV_Export2Shapefile({columns}
USING PARAMETERS shapefile = '{name}.shp',
overwrite = {overwrite},
diff --git a/verticapy/core/vdataframe/_machine_learning.py b/verticapy/core/vdataframe/_machine_learning.py
index 5ebf03fc1..6d8ac2bd0 100755
--- a/verticapy/core/vdataframe/_machine_learning.py
+++ b/verticapy/core/vdataframe/_machine_learning.py
@@ -524,7 +524,7 @@ def chaid(
result = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.chaid')*/
+ /*+LABEL('vDataFrame.chaid')*/
{split_predictor},
{response},
(cnt / SUM(cnt)
@@ -1987,7 +1987,7 @@ def train_test_split(
test_size: float = 0.33,
order_by: Union[None, str, list, dict] = None,
random_state: int = None,
- ) -> tuple["vDataframe", "vDataFrame"]:
+ ) -> tuple["vDataFrame", "vDataFrame"]:
"""
Creates two vDataFrames (train/test), which can be used
to evaluate a model. The intersection between the train
@@ -2096,7 +2096,7 @@ def train_test_split(
q = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.train_test_split')*/
+ /*+LABEL('vDataFrame.train_test_split')*/
APPROXIMATE_PERCENTILE({random_func}
USING PARAMETERS percentile = {test_size})
FROM {self}""",
diff --git a/verticapy/core/vdataframe/_pivot.py b/verticapy/core/vdataframe/_pivot.py
index 07d093d1f..c494e7f97 100755
--- a/verticapy/core/vdataframe/_pivot.py
+++ b/verticapy/core/vdataframe/_pivot.py
@@ -715,7 +715,7 @@ def explode_array(
vdf = create_new_vdf(
f"""
SELECT
- /*+LABEL('vDataframe.explode')*/
+ /*+LABEL('vDataFrame.explode')*/
{index},
{column},
EXPLODE({column}
diff --git a/verticapy/core/vdataframe/_read.py b/verticapy/core/vdataframe/_read.py
index e849ec873..ea1723c2a 100755
--- a/verticapy/core/vdataframe/_read.py
+++ b/verticapy/core/vdataframe/_read.py
@@ -84,7 +84,7 @@ def __getitem__(self, index: Any) -> Any:
index += self.shape()[0]
return _executeSQL(
query=f"""
- SELECT /*+LABEL('vDataframe.__getitem__')*/
+ SELECT /*+LABEL('vDataFrame.__getitem__')*/
{', '.join(columns)}
FROM {self}
{self._get_last_order_by()}
@@ -579,7 +579,7 @@ def shape(self) -> tuple[int, int]:
self._vars["count"] = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.shape')*/ COUNT(*)
+ /*+LABEL('vDataFrame.shape')*/ COUNT(*)
FROM {self} LIMIT 1
""",
title="Computing the total number of elements (COUNT(*))",
diff --git a/verticapy/core/vdataframe/_sys.py b/verticapy/core/vdataframe/_sys.py
index 79f61bc2c..2e48ea1e9 100755
--- a/verticapy/core/vdataframe/_sys.py
+++ b/verticapy/core/vdataframe/_sys.py
@@ -800,7 +800,7 @@ def explain(self, digraph: bool = False) -> str:
query=f"""
EXPLAIN
SELECT
- /*+LABEL('vDataframe.explain')*/ *
+ /*+LABEL('vDataFrame.explain')*/ *
FROM {self}""",
title="Explaining the Current Relation",
method="fetchall",
diff --git a/verticapy/core/vdataframe/_typing.py b/verticapy/core/vdataframe/_typing.py
index 7829c67b4..33a8501b1 100755
--- a/verticapy/core/vdataframe/_typing.py
+++ b/verticapy/core/vdataframe/_typing.py
@@ -110,7 +110,7 @@ def astype(self, dtype: dict) -> "vDataFrame":
data = vpd.load_titanic()
- Let's check the data types of various vcolumns.
+ Let's check the data types of various vDataColumns.
.. code-block:: python
@@ -127,13 +127,13 @@ def astype(self, dtype: dict) -> "vDataFrame":
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_astype1.html
- Let's change the data type of few vcolumns.
+ Let's change the data type of few vDataColumns.
.. code-block:: python
data.astype({"fare": "int", "cabin": "varchar(1)"})
- Let's check the data type of various vcolumns again.
+ Let's check the data type of various vDataColumns again.
.. code-block:: python
@@ -307,14 +307,14 @@ def catcol(self, max_cardinality: int = 12) -> list:
data = vpd.load_titanic()
- Let's check the categorical vcolumns considering maximum
+ Let's check the categorical vDataColumns considering maximum
cardinality as 10.
.. ipython:: python
data.catcol(max_cardinality = 10)
- Let's again check the categorical vcolumns considering
+ Let's again check the categorical vDataColumns considering
maximum cardinality as 6.
.. ipython:: python
@@ -336,7 +336,7 @@ def catcol(self, max_cardinality: int = 12) -> list:
is_cat = _executeSQL(
query=f"""
SELECT
- /*+LABEL('vDataframe.catcol')*/
+ /*+LABEL('vDataFrame.catcol')*/
(APPROXIMATE_COUNT_DISTINCT({column}) < {max_cardinality})
FROM {self}""",
title="Looking at columns with low cardinality.",
@@ -430,7 +430,7 @@ def datecol(self) -> list:
data["dob"].astype("date")
data["doj"].astype("date")
- Let's retrieve the date type vcolumns in the dataset.
+ Let's retrieve the date type vDataColumns in the dataset.
.. ipython:: python
@@ -512,7 +512,7 @@ def dtypes(self) -> TableSample:
data = vpd.load_titanic()
- Let's check the data type of various vcolumns.
+ Let's check the data type of various vDataColumns.
.. code-block:: python
@@ -606,7 +606,7 @@ def numcol(self, exclude_columns: Optional[SQLColumns] = None) -> list:
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_numcol.html
- Let's retrieve the numeric type vcolumns in the dataset.
+ Let's retrieve the numeric type vDataColumns in the dataset.
.. ipython:: python
@@ -701,7 +701,7 @@ def astype(self, dtype: Union[str, type]) -> "vDataFrame":
data = vpd.load_titanic()
- Let's check the data type of fare vcolumn.
+ Let's check the data type of fare vDataColumn.
.. ipython:: python
@@ -718,7 +718,7 @@ def astype(self, dtype: Union[str, type]) -> "vDataFrame":
data["fare"].astype(int)
- Let's check the data type of fare vcolumn again.
+ Let's check the data type of fare vDataColumn again.
.. ipython:: python
@@ -940,7 +940,7 @@ def category(self) -> str:
data = vpd.load_titanic()
- Let's check the category of "fare" and "name" vcolumns.
+ Let's check the category of "fare" and "name" vDataColumns.
.. ipython:: python
@@ -1014,7 +1014,7 @@ def ctype(self) -> str:
data = vpd.load_titanic()
- Let's check the DB type of "fare" and "name" vcolumns.
+ Let's check the DB type of "fare" and "name" vDataColumns.
.. ipython:: python
@@ -1083,7 +1083,7 @@ def isarray(self) -> bool:
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_isarray.html
- Let's check if data type of "artists" vcolumn is array or not.
+ Let's check if data type of "artists" vDataColumn is array or not.
.. ipython:: python
@@ -1152,13 +1152,13 @@ def isbool(self) -> bool:
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_isbool.html
- Let's check if data type of "is_temp" vcolumn is bool or not.
+ Let's check if data type of "is_temp" vDataColumn is bool or not.
.. ipython:: python
data["is_temp"].isbool()
- Let's check if data type of "empid" vcolumn is bool or not.
+ Let's check if data type of "empid" vDataColumn is bool or not.
.. ipython:: python
@@ -1228,13 +1228,13 @@ def isdate(self) -> bool:
import verticapy.datasets as vpd
amazon = vpd.load_amazon()
- Let's check if the category of "date" vcolumn is date or not.
+ Let's check if the category of "date" vDataColumn is date or not.
.. ipython:: python
amazon["date"].isdate()
- Let's check if the category of "state" vcolumn is date or not
+ Let's check if the category of "state" vDataColumn is date or not
.. ipython:: python
@@ -1303,7 +1303,7 @@ def isnum(self) -> bool:
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_isbool.html
- Let's check if data type of "empid" vcolumn is numerical or not.
+ Let's check if data type of "empid" vDataColumn is numerical or not.
.. ipython:: python
@@ -1374,13 +1374,13 @@ def isvmap(self) -> bool:
.. raw:: html
:file: SPHINX_DIRECTORY/figures/core_vDataFrame_typing_isvmap.html
- Let's check if data type of "mgr" vcolumn is vmap or not.
+ Let's check if data type of "mgr" vDataColumn is vmap or not.
.. ipython:: python
data["mgr"].isvmap()
- Let's check if data type of "empid" vcolumn is vmap or not.
+ Let's check if data type of "empid" vDataColumn is vmap or not.
.. ipython:: python
diff --git a/verticapy/plotting/_plotly/bar.py b/verticapy/plotting/_plotly/bar.py
index aa6cc796a..7304c5e39 100755
--- a/verticapy/plotting/_plotly/bar.py
+++ b/verticapy/plotting/_plotly/bar.py
@@ -110,11 +110,15 @@ def draw(
Draws a 2D BarChart using the Matplotlib API.
"""
fig_base = self._get_fig(fig)
+ ncolors = len(self.get_colors())
for i in range(len(self.layout["y_labels"])):
fig = go.Bar(
name=self.layout["y_labels"][i],
x=self.layout["x_labels"],
y=self.data["X"][:, i],
+ marker=dict(
+ color=self.get_colors()[i % ncolors],
+ ),
)
fig_base.add_trace(fig)
params = self._update_dict(self.init_layout_style, style_kwargs)
diff --git a/verticapy/plotting/_plotly/barh.py b/verticapy/plotting/_plotly/barh.py
index c1be527b4..2d0edd4ce 100644
--- a/verticapy/plotting/_plotly/barh.py
+++ b/verticapy/plotting/_plotly/barh.py
@@ -110,6 +110,7 @@ def draw(
"""
n, m = self.data["X"].shape
fig_base = self._get_fig(fig)
+ ncolors = len(self.get_colors())
if self.layout["kind"] == "fully_stacked":
self.data["X"] = self.data["X"] / np.sum(
self.data["X"], axis=1, keepdims=True
@@ -129,6 +130,9 @@ def draw(
y=self.layout["x_labels"],
x=self.data["X"][:, i],
orientation="h",
+ marker=dict(
+ color=self.get_colors()[i % ncolors],
+ ),
)
fig_base.add_trace(fig)
params = self._update_dict(self.init_layout_style, style_kwargs)
diff --git a/verticapy/plotting/_plotly/hist.py b/verticapy/plotting/_plotly/hist.py
index 119b73024..5c6a40a34 100644
--- a/verticapy/plotting/_plotly/hist.py
+++ b/verticapy/plotting/_plotly/hist.py
@@ -55,6 +55,7 @@ def draw(
"""
fig = self._get_fig(fig)
key = "categories" if self.layout["has_category"] else "columns"
+ ncolors = len(self.get_colors())
for i in range(len(self.layout[key])):
fig.add_trace(
go.Bar(
@@ -64,6 +65,9 @@ def draw(
width=self.data["width"],
offset=0,
opacity=0.8 if len(self.layout[key]) > 1 else 1,
+ marker=dict(
+ color=self.get_colors()[i % ncolors],
+ ),
)
)
fig.update_layout(yaxis_title=self.layout["method_of"])
diff --git a/verticapy/plotting/_plotly/machine_learning/importance.py b/verticapy/plotting/_plotly/machine_learning/importance.py
index 30c33a828..e8eb1f0bc 100644
--- a/verticapy/plotting/_plotly/machine_learning/importance.py
+++ b/verticapy/plotting/_plotly/machine_learning/importance.py
@@ -73,6 +73,9 @@ def draw(
y=self.layout["columns"],
orientation="h",
name="Postive",
+ marker=dict(
+ color=self.get_colors()[0],
+ ),
)
)
showlegend = False
@@ -83,6 +86,9 @@ def draw(
y=self.layout["columns"],
orientation="h",
name="Negative",
+ marker=dict(
+ color=self.get_colors()[1],
+ ),
)
)
showlegend = True
diff --git a/verticapy/tests_new/core/vdataframe/test_agg.py b/verticapy/tests_new/core/vdataframe/test_agg.py
index 3515bf033..b979e96ce 100644
--- a/verticapy/tests_new/core/vdataframe/test_agg.py
+++ b/verticapy/tests_new/core/vdataframe/test_agg.py
@@ -179,8 +179,8 @@ def test_groupby(
[
("vDataFrame", []),
("vDataFrame_column", ["age"]),
- ("vcolumn", ["age"]),
- ("vcolumn", ["age", "fare", "pclass", "survived"]),
+ ("vDataColumn", ["age"]),
+ ("vDataColumn", ["age", "fare", "pclass", "survived"]),
],
)
@pytest.mark.parametrize("agg_func_type", ["agg", "aggregate"])
@@ -327,7 +327,7 @@ def test_aggregate(
[
("vDataFrame", []),
("vDataFrame_columns", ["age"]),
- ("vcolumn", ["age", "fare", "pclass", "survived"]),
+ ("vDataColumn", ["age", "fare", "pclass", "survived"]),
],
)
def test_vdf_vcol(
@@ -469,7 +469,7 @@ def test_vdf(self, titanic_vd, func_name, vpy_func, py_func):
["value_counts", "topk", "distinct"],
)
@pytest.mark.parametrize("columns", ["pclass"])
- def test_vcolumn(self, titanic_vd, columns, func_name):
+ def test_vDataColumn(self, titanic_vd, columns, func_name):
"""
test function - Vcolumn groupby
"""
diff --git a/verticapy/tests_new/core/vdataframe/test_correlation.py b/verticapy/tests_new/core/vdataframe/test_correlation.py
index 753557b1c..50078041f 100644
--- a/verticapy/tests_new/core/vdataframe/test_correlation.py
+++ b/verticapy/tests_new/core/vdataframe/test_correlation.py
@@ -400,7 +400,7 @@ def test_regr(self, titanic_vd, columns, method, expected):
[
("vDataFrame", []),
("vDataFrame_column", ["sex", "pclass"]),
- ("vcolumn", ["sex"]),
+ ("vDataColumn", ["sex"]),
],
)
def test_iv_woe(self, titanic_vd, input_type, columns):
@@ -436,7 +436,7 @@ def test_iv_woe(self, titanic_vd, input_type, columns):
_iv = np.sum((freq_data[1] - freq_data[0]) * _woe)
py_res.append(_iv)
- py_res = py_res[0] if input_type == "vcolumn" else py_res
+ py_res = py_res[0] if input_type == "vDataColumn" else py_res
print(f"VerticaPy Result: {vpy_res} \nPython Result :{py_res}\n")
assert vpy_res == pytest.approx(py_res, abs=1e-03, rel=1e-03)
diff --git a/verticapy/tests_new/core/vdataframe/test_fill.py b/verticapy/tests_new/core/vdataframe/test_fill.py
index 3aa3e4699..391b7cecb 100644
--- a/verticapy/tests_new/core/vdataframe/test_fill.py
+++ b/verticapy/tests_new/core/vdataframe/test_fill.py
@@ -61,7 +61,10 @@ class TestFill:
)
@pytest.mark.parametrize(
"function_type, numeric_only, expr, by, order_by",
- [("vDataFrame", None, None, None, None), ("vcolumn", None, None, None, None)],
+ [
+ ("vDataFrame", None, None, None, None),
+ ("vDataColumn", None, None, None, None),
+ ],
)
def test_fillna(
self,
diff --git a/verticapy/tests_new/core/vdataframe/test_filter.py b/verticapy/tests_new/core/vdataframe/test_filter.py
index 87f4c7052..67d7840fc 100644
--- a/verticapy/tests_new/core/vdataframe/test_filter.py
+++ b/verticapy/tests_new/core/vdataframe/test_filter.py
@@ -163,7 +163,7 @@ def test_between_time(self, smart_meters_vd, ts, start_time, end_time, inplace):
"age",
],
)
- @pytest.mark.parametrize("function_type", ["vDataFrame", "vcolumn"])
+ @pytest.mark.parametrize("function_type", ["vDataFrame", "vDataColumn"])
def test_drop(self, titanic_vd_fun, function_type, columns):
"""
test function - drop
@@ -208,7 +208,7 @@ def test_drop_duplicates(self, winequality_vpy_fun, columns):
"ticket",
],
)
- @pytest.mark.parametrize("function_type", ["vDataFrame", "vcolumn"])
+ @pytest.mark.parametrize("function_type", ["vDataFrame", "vDataColumn"])
def test_dropna(self, titanic_vd_fun, function_type, columns):
"""
test function - dropna
@@ -281,7 +281,7 @@ def test_first(self, smart_meters_vd):
"function_type, column, conditions",
[
("vDataFrame", None, {"sex": ["female"], "survived": [1], "parch": [1]}),
- ("vcolumn", "sex", ["female"]),
+ ("vDataColumn", "sex", ["female"]),
],
)
def test_isin(self, titanic_vd_fun, function_type, column, conditions):
diff --git a/verticapy/tests_new/core/vdataframe/test_math.py b/verticapy/tests_new/core/vdataframe/test_math.py
index c55cb31a9..946207cc7 100644
--- a/verticapy/tests_new/core/vdataframe/test_math.py
+++ b/verticapy/tests_new/core/vdataframe/test_math.py
@@ -39,8 +39,8 @@ class TestMath:
("vDataFrame", "age"),
("vDataFrame_column", "age"),
("vDataFrame_column", ["age", "fare", "pclass", "survived"]),
- ("vcolumn", "age"),
- ("vcolumn", ["age", "fare", "pclass", "survived"]),
+ ("vDataColumn", "age"),
+ ("vDataColumn", ["age", "fare", "pclass", "survived"]),
],
)
def test_abs(self, titanic_vd_fun, input_type, columns):
@@ -126,8 +126,8 @@ def test_binary_operator(self, titanic_vd_fun, func, columns, scalar):
},
None,
),
- (["age"], "vcolumn", "POWER({}, 2)", None),
- (["age"], "vcolumn", "POWER({}, 2)", "age_pow2"),
+ (["age"], "vDataColumn", "POWER({}, 2)", None),
+ (["age"], "vDataColumn", "POWER({}, 2)", "age_pow2"),
],
)
def test_apply(self, titanic_vd_fun, columns, input_type, func, copy_name):
diff --git a/verticapy/tests_new/core/vdataframe/test_miscellaneous.py b/verticapy/tests_new/core/vdataframe/test_miscellaneous.py
index 0a4dbea1f..6fcbe8491 100644
--- a/verticapy/tests_new/core/vdataframe/test_miscellaneous.py
+++ b/verticapy/tests_new/core/vdataframe/test_miscellaneous.py
@@ -25,7 +25,7 @@
class TestMiscellaneousVDF:
"""
- test class to test Miscellaneous functions for vDataframe
+ test class to test Miscellaneous functions for vDataFrame
"""
def test_repr(self, titanic_vd_fun):
@@ -138,7 +138,7 @@ def test_sql(self, titanic_vd_fun, schema_loader):
class TestVDFCreate:
"""
- test class to test vDataframe create options
+ test class to test vDataFrame create options
"""
def test_using_input_relation(self, titanic_vd_fun, schema_loader):
diff --git a/verticapy/tests_new/core/vdataframe/test_read.py b/verticapy/tests_new/core/vdataframe/test_read.py
index 85c081e68..01cba71b2 100644
--- a/verticapy/tests_new/core/vdataframe/test_read.py
+++ b/verticapy/tests_new/core/vdataframe/test_read.py
@@ -47,8 +47,8 @@ def test_get_columns(self, titanic_vd, exclude_columns):
[
("vDataFrame", "age", None),
("vDataFrame", "age", 10),
- ("vcolumn", "ticket", 2),
- ("vcolumn", "ticket", None),
+ ("vDataColumn", "ticket", 2),
+ ("vDataColumn", "ticket", None),
],
)
@pytest.mark.parametrize("func", ["head", "tail"])
@@ -94,10 +94,10 @@ def test_head_tail(self, titanic_vd, func, function_type, columns, limit):
("vDataFrame", 4, 20, ["ticket", "home.dest"], None),
("vDataFrame", 4, None, ["ticket", "home.dest"], None),
("vDataFrame", None, 7, ["ticket"], None),
- ("vcolumn", 2, 5, "ticket", "name"),
- ("vcolumn", 2, None, "ticket", "name"),
- ("vcolumn", None, 5, "ticket", "name"),
- ("vcolumn", None, None, "ticket", "name"),
+ ("vDataColumn", 2, 5, "ticket", "name"),
+ ("vDataColumn", 2, None, "ticket", "name"),
+ ("vDataColumn", None, 5, "ticket", "name"),
+ ("vDataColumn", None, None, "ticket", "name"),
],
)
def test_iloc(
diff --git a/verticapy/tests_new/core/vdataframe/test_scaler.py b/verticapy/tests_new/core/vdataframe/test_scaler.py
index ce044f860..eafaf8a49 100644
--- a/verticapy/tests_new/core/vdataframe/test_scaler.py
+++ b/verticapy/tests_new/core/vdataframe/test_scaler.py
@@ -29,7 +29,7 @@ class TestScaler:
)
def test_scale_vdf(self, titanic_vd, columns, method):
"""
- test function - scaling for vDataframe
+ test function - scaling for vDataFrame
"""
titanic_pdf = titanic_vd.to_pandas()
titanic_pdf[columns] = titanic_pdf[columns].astype(float)
@@ -61,7 +61,7 @@ def test_scale_vdf(self, titanic_vd, columns, method):
[("age", "zscore"), ("age", "robust_zscore"), ("age", "minmax")],
)
@pytest.mark.parametrize("partition_by", ["pclass", None])
- def test_scale_vcolumn(self, titanic_vd_fun, partition_by, columns, method):
+ def test_scale_vDataColumn(self, titanic_vd_fun, partition_by, columns, method):
"""
test function - scaling for vDataColumns
"""
diff --git a/verticapy/tests_new/core/vdataframe/test_sys.py b/verticapy/tests_new/core/vdataframe/test_sys.py
index 7e2e60588..1192265e8 100644
--- a/verticapy/tests_new/core/vdataframe/test_sys.py
+++ b/verticapy/tests_new/core/vdataframe/test_sys.py
@@ -19,7 +19,7 @@
class TestVDFSys:
"""
- test class for sys functions test for vDataframe class
+ test class for sys functions test for vDataFrame class
"""
def test_current_relation(self, titanic_vd_fun):
diff --git a/verticapy/tests_new/core/vdataframe/test_text.py b/verticapy/tests_new/core/vdataframe/test_text.py
index 1b0747524..6f7f30fa8 100644
--- a/verticapy/tests_new/core/vdataframe/test_text.py
+++ b/verticapy/tests_new/core/vdataframe/test_text.py
@@ -49,7 +49,7 @@ def test_regexp(
name,
):
"""
- test function - regexp for vDataframe
+ test function - regexp for vDataFrame
"""
titanic_pdf = titanic_vd_fun.to_pandas()
diff --git a/verticapy/tests_new/core/vdataframe/test_typing.py b/verticapy/tests_new/core/vdataframe/test_typing.py
index 27117821d..4db1d26e7 100644
--- a/verticapy/tests_new/core/vdataframe/test_typing.py
+++ b/verticapy/tests_new/core/vdataframe/test_typing.py
@@ -34,7 +34,7 @@ class TestVDFTyping:
def test_astype(self, titanic_vd_fun):
"""
- test function - astype for vDataframe
+ test function - astype for vDataFrame
"""
# Testing vDataFrame.astype
titanic_vd_fun.astype({"fare": "int", "cabin": "varchar(1)"})
diff --git a/verticapy/tests_new/performance/vertica/test_qprof.py b/verticapy/tests_new/performance/vertica/test_qprof.py
index 61dd572e8..7a7f5d96c 100644
--- a/verticapy/tests_new/performance/vertica/test_qprof.py
+++ b/verticapy/tests_new/performance/vertica/test_qprof.py
@@ -1515,7 +1515,7 @@ def test_get_qexecution(
followed by sorting based on key column(s).
**Steps to get expected result**
- - Step 5: Get query execution report (vDataframe) using ``get_qexecution_report`` method, and repeat step 4
+ - Step 5: Get query execution report (vDataFrame) using ``get_qexecution_report`` method, and repeat step 4
**Steps to compare actual and expected results**
- Step 6: compare actual and expected pandas dataframe using pandas compare function.