-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathFigure 4-6-1.r
71 lines (60 loc) · 2.54 KB
/
Figure 4-6-1.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# R code for Figure 4.6.1 #
# Required packages #
# - MASS: multivariate normal draws #
# - ivmodel: IV regressions #
# - parallel: Parallel process simulation #
# - ggplot2: making pretty graphs #
# - RColorBrewer: pleasing color schemes #
# - reshape: manipulate data #
library(MASS)
library(ivmodel)
library(parallel)
library(ggplot2)
library(RColorBrewer)
library(reshape)
nsims = 100000
set.seed(1984, "L'Ecuyer")
irrelevantInstrMC <- function(...) {
# Store coefficients
COEFS <- rep(NA, 3)
names(COEFS) <- c("ols", "tsls", "liml")
# Set parameters
Sigma = matrix(c(1, 0.8, 0.8, 1), 2, 2)
errors = mvrnorm(n = 1000, rep(0, 2), Sigma)
eta = errors[ , 1]
xi = errors[ , 2]
# Create Z, x, y
Z = sapply(1:20, function(x) rnorm(1000))
x = 0.1 * Z[ , 1] + xi
y = x + eta
# OLS
OLS <- lm(y ~ x)
COEFS["ols"] <- summary(OLS)$coefficients[2, 1]
# Run IV regressions
ivregressions <- ivmodel(Y = y, D = x, Z = Z)
COEFS["tsls"] <- coef.ivmodel(ivregressions)["TSLS", "Estimate"]
COEFS["liml"] <- coef.ivmodel(ivregressions)["LIML", "Estimate"]
# Return results
return(COEFS)
}
# Run simulations
SIMBETAS <- data.frame(t(simplify2array(mclapply(1:nsims, irrelevantInstrMC))))
df <- melt(SIMBETAS[ , 1:3])
names(df) <- c("Estimator", "beta")
df$Estimator <- factor(df$Estimator,
levels = c("ols", "tsls", "liml"),
labels = c("OLS", "2SLS", "LIML"))
g <- ggplot(df, aes(x = beta, colour = Estimator, linetype = Estimator)) +
stat_ecdf(geom = "step") +
xlab(expression(widehat(beta))) + ylab(expression(F[n](widehat(beta)))) +
xlim(0, 2.5) +
scale_linetype_manual(values = c("solid", "longdash", "twodash")) +
scale_color_manual(values = brewer.pal(3, "Set1"),
labels = c("OLS", "2SLS", "LIML")) +
geom_vline(xintercept = 1.0, linetype = "longdash") +
geom_hline(yintercept = 0.5, linetype = "longdash") +
theme(axis.title.y = element_text(angle=0)) +
theme_set(theme_gray(base_size = 24))
ggsave(file = "Figure 4-6-1-R.png", height = 8, width = 12, dpi = 300)
write.csv(df, "Figure 4-6-1.csv")
# End of script