-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathsynthesis_task.py
670 lines (571 loc) · 30.6 KB
/
synthesis_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import os
import glob
import lpips
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import restore_model
from utils import run_shell_cmd
from utils import get_embedder
from utils import AverageMeter
from utils import inverse
from utils import disparity_normalization_vis
from network.ssim import SSIM
from network.layers import edge_aware_loss
from network.layers import edge_aware_loss_v2
from network.layers import psnr
from operations import rendering_utils
from operations import mpi_rendering
from operations.homography_sampler import HomographySample
from network.monodepth2.resnet_encoder import ResnetEncoder
from network.monodepth2.depth_decoder import DepthDecoder
def _get_disparity_list(config, B, device=torch.device("cuda:0")):
S_coarse, S_fine = config["mpi.num_bins_coarse"], config["mpi.num_bins_fine"]
disparity_start, disparity_end = config["mpi.disparity_start"], config["mpi.disparity_end"]
if config.get("mpi.fix_disparity", False):
if len(config.get("mpi.disparity_list", torch.zeros((1)))) == S_coarse + 1:
disparity_coarse_src = torch.from_numpy(config["mpi.disparity_list"][1:]).to(
dtype=torch.float32, device=device
).unsqueeze(0).repeat(B, 1) # BxS
else:
disparity_coarse_src = torch.linspace(
disparity_start, disparity_end, S_coarse, dtype=torch.float32,
device=device
).unsqueeze(0).repeat(B, 1) # BxS
else:
if len(config.get("mpi.disparity_list", torch.zeros((1)))) == S_coarse + 1:
disparity_coarse_src = rendering_utils.uniformly_sample_disparity_from_bins(
batch_size=B,
disparity_np=config["mpi.disparity_list"],
device=device
)
else:
disparity_coarse_src = rendering_utils.uniformly_sample_disparity_from_linspace_bins(
batch_size=B,
num_bins=S_coarse,
start=disparity_start,
end=disparity_end,
device=device
)
return disparity_coarse_src
class SynthesisTask():
def __init__(self, config, logger, is_val=False):
self.embedder, out_dim = get_embedder(config["model.pos_encoding_multires"])
# Init model
self.backbone = ResnetEncoder(num_layers=50,
pretrained=config.get("model.imagenet_pretrained", True)).to(device=torch.device("cuda:0"))
self.decoder = DepthDecoder(
# Common params
num_ch_enc=self.backbone.num_ch_enc,
use_alpha=config.get("mpi.use_alpha", False),
num_output_channels=4,
scales=range(4),
use_skips=True,
# DepthDecoder params (ignored in BatchDecoder impl)
embedder=self.embedder,
embedder_out_dim=out_dim,
).to(device=torch.device("cuda:0"))
# Init optimizer
params = [
{"params": self.backbone.parameters(), "lr": config["lr.backbone_lr"]},
{"params": self.decoder.parameters(), "lr": config["lr.decoder_lr"]}
]
self.optimizer = torch.optim.Adam(params, weight_decay=config["lr.weight_decay"])
# Restore model
if config["global_rank"] == 0:
self.lpips = lpips.LPIPS(net="vgg").cuda()
self.lpips.requires_grad = False
if config["training.pretrained_checkpoint_path"] and \
config["training.pretrained_checkpoint_path"].startswith("hdfs"):
run_shell_cmd(["hdfs", "dfs", "-get", config["training.pretrained_checkpoint_path"], "."],
logger)
config["training.pretrained_checkpoint_path"] = os.path.basename(
config["training.pretrained_checkpoint_path"])
restore_model(config["training.pretrained_checkpoint_path"],
self.backbone, self.decoder, self.optimizer,
logger=logger)
if not is_val:
process_group = torch.distributed.new_group(range(dist.get_world_size()))
self.backbone = nn.SyncBatchNorm.convert_sync_batchnorm(self.backbone, process_group)
self.backbone = DDP(self.backbone, find_unused_parameters=True)
self.backbone.train()
self.decoder = nn.SyncBatchNorm.convert_sync_batchnorm(self.decoder, process_group)
self.decoder = DDP(self.decoder, find_unused_parameters=True)
self.decoder.train()
# LR scheduling
self.lr_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
config["lr.decay_steps"],
gamma=config["lr.decay_gamma"])
else:
self.backbone = nn.DataParallel(self.backbone)
self.decoder = nn.DataParallel(self.decoder)
H_tgt, W_tgt = config["data.img_h"], config["data.img_w"]
self.homography_sampler_list = \
[HomographySample(H_tgt, W_tgt, device=torch.device("cuda:0")),
HomographySample(int(H_tgt / 2), int(W_tgt / 2), device=torch.device("cuda:0")),
HomographySample(int(H_tgt / 4), int(W_tgt / 4), device=torch.device("cuda:0")),
HomographySample(int(H_tgt / 8), int(W_tgt / 8), device=torch.device("cuda:0"))]
self.upsample_list = \
[nn.Identity(),
nn.Upsample(size=(int(H_tgt / 2), int(W_tgt / 2))),
nn.Upsample(size=(int(H_tgt / 4), int(W_tgt / 4))),
nn.Upsample(size=(int(H_tgt / 8), int(W_tgt / 8)))]
self.ssim = SSIM(size_average=True).cuda()
self.config = config
self.tb_writer = config.get("tb_writer", None)
self.logger = logger
self.init_data(torch.device("cuda:0"))
# Keep track of training / validation losses
self.train_losses = {
"loss": AverageMeter("train_loss"),
"loss_rgb_src": AverageMeter("train_loss_rgb_src"),
"loss_ssim_src": AverageMeter("train_loss_ssim_src"),
"loss_disp_pt3dsrc": AverageMeter("train_loss_disp_pt3dsrc"),
"loss_rgb_tgt": AverageMeter("train_loss_rgb_tgt"),
"loss_ssim_tgt": AverageMeter("train_loss_ssim_tgt"),
"lpips_tgt": AverageMeter("train_lpips_tgt"),
"psnr_tgt": AverageMeter("train_psnr_tgt"),
"loss_disp_pt3dtgt": AverageMeter("train_loss_disp_pt3dtgt"),
}
self.val_losses = {
"loss_rgb_src": AverageMeter("val_loss_rgb_src"),
"loss_ssim_src": AverageMeter("val_loss_ssim_src"),
"loss_disp_pt3dsrc": AverageMeter("val_loss_disp_pt3dsrc"),
"loss_rgb_tgt": AverageMeter("val_loss_rgb_tgt"),
"loss_ssim_tgt": AverageMeter("val_loss_ssim_tgt"),
"lpips_tgt": AverageMeter("val_lpips_tgt"),
"psnr_tgt": AverageMeter("val_psnr_tgt"),
"loss_disp_pt3dtgt": AverageMeter("val_loss_disp_pt3dtgt"),
}
self.current_epoch = 0
self.global_step = 0
def init_data(self, device):
B, H, W = self.config["data.per_gpu_batch_size"], self.config["data.img_h"], self.config["data.img_w"]
L = self.config["data.num_tgt_views"]
N_pt = self.config["data.visible_point_count"]
self.src_imgs = torch.zeros((B, 3, H, W), dtype=torch.float32, device=device)
self.K_src = torch.zeros((B, 3, 3), dtype=torch.float32, device=device)
self.K_src_inv = torch.zeros((B, 3, 3), dtype=torch.float32, device=device)
self.pt3d_src = torch.zeros((B, 3, N_pt), dtype=torch.float32, device=device)
self.tgt_imgs = torch.zeros((B, L, 3, H, W), dtype=torch.float32, device=device)
self.G_src_tgt = torch.zeros((B, L, 4, 4), dtype=torch.float32, device=device)
self.K_tgt = torch.zeros((B, L, 3, 3), dtype=torch.float32, device=device)
self.K_tgt_inv = torch.zeros((B, L, 3, 3), dtype=torch.float32, device=device)
self.pt3d_tgt = torch.zeros((B, L, 3, N_pt), dtype=torch.float32, device=device)
def set_data(self, items):
src_items, tgt_items = items
self.src_imgs.resize_as_(src_items["img"]).copy_(src_items["img"]) # Bx3xHxW
self.K_src.resize_as_(src_items["K"]).copy_(src_items["K"]) # Bx3x3
self.K_src_inv.resize_as_(src_items["K_inv"]).copy_(src_items["K_inv"])
self.pt3d_src.resize_as_(src_items["xyzs"]).copy_(src_items["xyzs"]) # Bx3xN_pt
self.tgt_imgs.resize_as_(tgt_items["img"]).copy_(tgt_items["img"]) # BxLx3xHxW
self.G_src_tgt.resize_as_(tgt_items["G_src_tgt"]).copy_(tgt_items["G_src_tgt"]) # BxLx4x4
self.K_tgt.resize_as_(tgt_items["K"]).copy_(tgt_items["K"]) # BxLx3x3
self.K_tgt_inv.resize_as_(tgt_items["K_inv"]).copy_(tgt_items["K_inv"]) # BxLx3x3
self.pt3d_tgt.resize_as_(tgt_items["xyzs"]).copy_(tgt_items["xyzs"]) # BxLx3xN_pt
L = self.tgt_imgs.size(1)
# in current setting, memory consumption is huge, only one supervision is allowed
assert L == 1
self.tgt_imgs = self.tgt_imgs.squeeze(1)
self.G_src_tgt = self.G_src_tgt.squeeze(1)
self.K_tgt = self.K_tgt.squeeze(1)
self.K_tgt_inv = self.K_tgt_inv.squeeze(1)
self.pt3d_tgt = self.pt3d_tgt.squeeze(1)
self.G_tgt_src = inverse(self.G_src_tgt)
torch.cuda.synchronize()
def compute_scale_factor(self, disparity_syn_pt3dsrc, pt3d_disp_src):
B = pt3d_disp_src.size()[0]
if self.config["data.name"] in ["flowers", "kitti_raw", "dtu"]:
return torch.ones(B, dtype=torch.float32).cuda()
# 1. calibrate the scale between the src image/depth and our synthesized image/depth
scale_factor = torch.exp(torch.mean(
torch.log(disparity_syn_pt3dsrc) - torch.log(pt3d_disp_src),
dim=2, keepdim=False)).squeeze(1) # B
return scale_factor
def mpi_predictor(self, src_imgs_BCHW, disparity_BS):
# random permute the disparity
conv1_out, block1_out, block2_out, block3_out, block4_out = self.backbone(src_imgs_BCHW)
outputs = self.decoder([conv1_out, block1_out, block2_out, block3_out, block4_out],
disparity_BS)
output_list = [outputs[("disp", 0)], outputs[("disp", 1)], outputs[("disp", 2)], outputs[("disp", 3)]]
return output_list
def loss_fcn_per_scale(self, scale,
mpi_all_src, disparity_all_src,
scale_factor=None,
is_val=False):
src_imgs_scaled = self.upsample_list[scale](self.src_imgs)
tgt_imgs_scaled = self.upsample_list[scale](self.tgt_imgs)
B, _, H_img_scaled, W_img_scaled = src_imgs_scaled.size()
K_src_scaled = self.K_src / (2 ** scale)
K_src_scaled[:, 2, 2] = 1
K_tgt_scaled = self.K_tgt / (2 ** scale)
K_tgt_scaled[:, 2, 2] = 1
# TODO: sometimes it returns identity, unless there is CUDA_LAUNCH_BLOCKING=1
torch.cuda.synchronize()
K_src_scaled_inv = torch.inverse(K_src_scaled)
# compute xyz for src and tgt
# here we need to ensure mpi resolution == image resolution
assert mpi_all_src.size(3) == H_img_scaled, mpi_all_src.size(4) == W_img_scaled
xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(
self.homography_sampler_list[scale].meshgrid,
disparity_all_src,
K_src_scaled_inv
)
# compose depth_src
# here is blend_weights means how much this plane is visible from the camera, BxSx1xHxW
# e.g, blend_weights = 0 means it is invisible from the camera
mpi_all_rgb_src = mpi_all_src[:, :, 0:3, :, :] # BxSx3xHxW
mpi_all_sigma_src = mpi_all_src[:, :, 3:, :, :] # BxSx1xHxW
src_imgs_syn, src_depth_syn, blend_weights, weights = mpi_rendering.render(
mpi_all_rgb_src,
mpi_all_sigma_src,
xyz_src_BS3HW,
use_alpha=self.config.get("mpi.use_alpha", False),
is_bg_depth_inf=self.config.get("mpi.render_tgt_rgb_depth", False)
)
if self.config.get("training.src_rgb_blending", True):
mpi_all_rgb_src = blend_weights * src_imgs_scaled.unsqueeze(1) + (1 - blend_weights) * mpi_all_rgb_src
src_imgs_syn, src_depth_syn = mpi_rendering.weighted_sum_mpi(
mpi_all_rgb_src,
xyz_src_BS3HW,
weights,
is_bg_depth_inf=self.config.get("mpi.render_tgt_rgb_depth", False)
)
src_disparity_syn = torch.reciprocal(src_depth_syn)
# compute scale factor
src_pt3d_disp = torch.reciprocal(self.pt3d_src[:, 2:, :]) # Bx1xN_pt
src_pt3d_pxpy = torch.matmul(K_src_scaled, self.pt3d_src) # Bx3x3 * Bx3xN_pt -> Bx3xN_pt
src_pt3d_pxpy = src_pt3d_pxpy[:, 0:2, :] / src_pt3d_pxpy[:, 2:, :] # Bx2xN_pt
src_pt3d_disp_syn = rendering_utils.gather_pixel_by_pxpy(src_disparity_syn, src_pt3d_pxpy) # Bx1xN_pt
if scale_factor is None:
scale_factor = self.compute_scale_factor(src_pt3d_disp_syn, src_pt3d_disp) # B
# Render target view
render_results = self.render_novel_view(mpi_all_rgb_src, mpi_all_sigma_src,
disparity_all_src, self.G_tgt_src,
K_src_scaled_inv, K_tgt_scaled,
scale=scale,
scale_factor=scale_factor)
tgt_imgs_syn = render_results["tgt_imgs_syn"]
tgt_disparity_syn = render_results["tgt_disparity_syn"]
tgt_mask_syn = render_results["tgt_mask_syn"]
# build loss
# Read lambdas
disp_lambda = 0.0 if self.config["data.name"] in ["flowers", "kitti_raw", "dtu"] else 1.0
smoothness_lambda_v1 = self.config.get("loss.smoothness_lambda_v1", 0.5)
smoothness_lambda_v2 = self.config.get("loss.smoothness_lambda_v2", 1.0)
with torch.no_grad():
loss_rgb_src = torch.mean(torch.abs(src_imgs_syn - src_imgs_scaled))
loss_ssim_src = 1 - self.ssim(src_imgs_syn, src_imgs_scaled)
loss_smooth_src = edge_aware_loss(src_imgs_scaled, src_disparity_syn,
gmin=self.config["loss.smoothness_gmin"],
grad_ratio=self.config.get("loss.smoothness_grad_ratio", 0.1))
# 1. disparity at src frame
# compute pixel coordinates of gt points
src_pt3d_disp_syn_scaled = src_pt3d_disp_syn / scale_factor.view(B, 1, 1)
loss_disp_pt3dsrc = disp_lambda * torch.mean(torch.abs(
torch.log(src_pt3d_disp_syn_scaled) - torch.log(src_pt3d_disp)))
# disparity at tgt frame
tgt_pt3d_disp = torch.reciprocal(self.pt3d_tgt[:, 2:, :]) # Bx1xN_pt
tgt_pt3d_pxpy = torch.matmul(K_tgt_scaled, self.pt3d_tgt) # Bx3x3 * Bx3xN_pt -> Bx3xN_pt
tgt_pt3d_pxpy = tgt_pt3d_pxpy[:, 0:2, :] / tgt_pt3d_pxpy[:, 2:, :] # Bx2xN_pt
tgt_pt3d_disp_syn = rendering_utils.gather_pixel_by_pxpy(tgt_disparity_syn, tgt_pt3d_pxpy) # Bx1xN_pt
tgt_pt3d_disp_syn_scaled = tgt_pt3d_disp_syn / scale_factor.view(B, 1, 1)
loss_disp_pt3dtgt = disp_lambda * torch.mean(torch.abs(
torch.log(tgt_pt3d_disp_syn_scaled) - torch.log(tgt_pt3d_disp)
))
# 2. rgb loss at tgt frame
# some pixels in tgt frame is outside src FoV, here we can detect and ignore those pixels
rgb_tgt_valid_mask = torch.ge(tgt_mask_syn, self.config["mpi.valid_mask_threshold"]).to(torch.float32)
loss_map = torch.abs(tgt_imgs_syn - tgt_imgs_scaled) * rgb_tgt_valid_mask
loss_rgb_tgt = loss_map.mean()
# Edge aware smoothless losses
loss_smooth_tgt = smoothness_lambda_v1 * edge_aware_loss(
tgt_imgs_scaled,
tgt_disparity_syn,
gmin=self.config["loss.smoothness_gmin"],
grad_ratio=self.config.get("loss.smoothness_grad_ratio", 0.1))
loss_smooth_tgt_v2 = smoothness_lambda_v2 * edge_aware_loss_v2(tgt_imgs_scaled, tgt_disparity_syn)
loss_smooth_src_v2 = smoothness_lambda_v2 * edge_aware_loss_v2(src_imgs_scaled, src_disparity_syn)
loss_ssim_tgt = 1 - self.ssim(tgt_imgs_syn, tgt_imgs_scaled)
# LPIPS and PSNR loss (for eval only):
with torch.no_grad():
lpips_tgt = self.lpips(tgt_imgs_syn, tgt_imgs_scaled).mean() \
if (is_val and scale == 0) \
else torch.tensor(0.0)
psnr_tgt = psnr(tgt_imgs_syn, tgt_imgs_scaled).mean()
loss = loss_disp_pt3dtgt + loss_disp_pt3dsrc \
+ loss_rgb_tgt + loss_ssim_tgt \
+ loss_smooth_tgt \
+ loss_smooth_src_v2 + loss_smooth_tgt_v2
loss_dict = {"loss": loss,
"loss_rgb_src": loss_rgb_src,
"loss_ssim_src": loss_ssim_src,
"loss_disp_pt3dsrc": loss_disp_pt3dsrc,
"loss_smooth_src": loss_smooth_src,
"loss_smooth_tgt": loss_smooth_tgt,
"loss_smooth_src_v2": loss_smooth_src_v2,
"loss_smooth_tgt_v2": loss_smooth_tgt_v2,
"loss_rgb_tgt": loss_rgb_tgt,
"loss_ssim_tgt": loss_ssim_tgt,
"lpips_tgt": lpips_tgt,
"psnr_tgt": psnr_tgt,
"loss_disp_pt3dtgt": loss_disp_pt3dtgt}
visualization_dict = {"src_disparity_syn": src_disparity_syn,
"tgt_disparity_syn": tgt_disparity_syn,
"tgt_imgs_syn": tgt_imgs_syn,
"tgt_mask_syn": tgt_mask_syn,
"src_imgs_syn": src_imgs_syn}
return loss_dict, visualization_dict, scale_factor
def loss_fcn(self, is_val):
loss_dict_list, visualization_dict_list = [], []
# Network forward
endpoints = self.network_forward()
scale_factor = None
scale_list = list(range(4))
for scale in scale_list:
loss_dict_tmp, visualization_dict_tmp, scale_factor = self.loss_fcn_per_scale(
scale,
endpoints["mpi_all_src_list"][scale],
endpoints["disparity_all_src"],
scale_factor,
is_val=is_val
)
loss_dict_list.append(loss_dict_tmp)
visualization_dict_list.append(visualization_dict_tmp)
loss_dict = loss_dict_list[0]
visualization_dict = visualization_dict_list[0]
for scale in scale_list[1:]:
if self.config.get("training.use_multi_scale", True):
loss_dict["loss"] += (loss_dict_list[scale]["loss_rgb_tgt"] + loss_dict_list[scale]["loss_ssim_tgt"])
loss_dict["loss"] += (loss_dict_list[scale]["loss_disp_pt3dsrc"] + loss_dict_list[scale]["loss_disp_pt3dtgt"])
loss_dict["loss"] += (loss_dict_list[scale]["loss_smooth_src_v2"] + loss_dict_list[scale]["loss_smooth_tgt_v2"])
return loss_dict, visualization_dict
def network_forward(self):
# configurations
B, H_img, W_img = self.src_imgs.size(0), self.src_imgs.size(2), self.src_imgs.size(3)
N_pt = self.pt3d_src.size(2)
L = self.tgt_imgs.size(1)
S_fine = self.config["mpi.num_bins_fine"]
# decoder to get rgb + alpha at certain disparity
# sample coarse disparity, BxS_coarse
disparity_coarse_src = _get_disparity_list(self.config, B, device=self.src_imgs.device)
xyz_src_BS3HW_coarse = mpi_rendering.get_src_xyz_from_plane_disparity(
self.homography_sampler_list[0].meshgrid,
disparity_coarse_src,
self.K_src_inv
)
# Extract MPI from network
mpi_all_src_list, disparity_all_src = mpi_rendering.predict_mpi_coarse_to_fine(
self.mpi_predictor,
self.src_imgs,
xyz_src_BS3HW_coarse,
disparity_coarse_src,
S_fine,
is_bg_depth_inf=self.config.get("mpi.render_tgt_rgb_depth", False)
)
return {
"mpi_all_src_list": mpi_all_src_list,
"disparity_all_src": disparity_all_src
}
def render_novel_view(self, mpi_all_rgb_src, mpi_all_sigma_src,
disparity_all_src, G_tgt_src,
K_src_inv, K_tgt, scale=0, scale_factor=None):
# Apply scale factor
if scale_factor is not None:
with torch.no_grad():
G_tgt_src = torch.clone(G_tgt_src)
G_tgt_src[:, 0:3, 3] = G_tgt_src[:, 0:3, 3] / scale_factor.view(-1, 1)
xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(
self.homography_sampler_list[scale].meshgrid,
disparity_all_src,
K_src_inv
)
xyz_tgt_BS3HW = mpi_rendering.get_tgt_xyz_from_plane_disparity(
xyz_src_BS3HW,
G_tgt_src
)
# Bx1xHxW, Bx3xHxW, Bx1xHxW
tgt_imgs_syn, tgt_depth_syn, tgt_mask_syn = mpi_rendering.render_tgt_rgb_depth(
self.homography_sampler_list[scale],
mpi_all_rgb_src,
mpi_all_sigma_src,
disparity_all_src,
xyz_tgt_BS3HW,
G_tgt_src,
K_src_inv,
K_tgt,
use_alpha=self.config.get("mpi.use_alpha", False),
is_bg_depth_inf=self.config.get("mpi.render_tgt_rgb_depth", False)
)
tgt_disparity_syn = torch.reciprocal(tgt_depth_syn)
return {
"tgt_imgs_syn": tgt_imgs_syn,
"tgt_disparity_syn": tgt_disparity_syn,
"tgt_mask_syn": tgt_mask_syn
}
def run_eval(self, val_data_loader):
self.logger.info("Start running evaluation on validation set:")
self.backbone.eval()
self.decoder.eval()
# clear train losses average meter
for val_loss_item in self.val_losses.values():
val_loss_item.reset()
batch_count = 0
with torch.no_grad():
for step, items in enumerate(val_data_loader):
batch_count += 1
if self.config.get("global_rank", 0) == 0 and batch_count % 20 == 0:
self.logger.info(" Eval progress: {}/{}".format(batch_count,
len(val_data_loader)))
self.set_data(items)
loss_dict, visualization_dict = self.loss_fcn(is_val=True)
self.log_val(step, loss_dict, visualization_dict)
# log evaluation result
self.logger.info("Evaluation finished, average losses: ")
for v in self.val_losses.values():
self.logger.info(" {}".format(v))
# Write val losses to tensorboard
for key, value in self.val_losses.items():
self.tb_writer.add_scalar(key + "/val", value.avg, self.global_step)
self.backbone.train()
self.decoder.train()
def log_val(self, step, loss_dict, visualization_dict):
B, H_img, W_img = self.src_imgs.size(0), self.src_imgs.size(2), self.src_imgs.size(3)
L = 1
# loss logging
for key, value in self.val_losses.items():
value.update(loss_dict[key].item(), n=B)
# write images to tensorboard
# write src image and gt_tgt, only once
if self.global_step == self.config["training.eval_interval"]:
src_imgs_BL = self.src_imgs.unsqueeze(1).repeat(1, L, 1, 1, 1).reshape(B * L, 3, H_img,
W_img).contiguous()
src_imgs_BL_grid = torchvision.utils.make_grid(src_imgs_BL)
self.tb_writer.add_image("00_src_images", src_imgs_BL_grid, step)
tgt_imgs_BL = self.tgt_imgs.reshape(B*L, 3, H_img, W_img).contiguous()
gt_tgt_grid = torchvision.utils.make_grid(tgt_imgs_BL)
self.tb_writer.add_image("01_gt_tgt_images", gt_tgt_grid, step)
syn_src_grid = torchvision.utils.make_grid(visualization_dict["src_imgs_syn"])
self.tb_writer.add_image(
"02_syn_src_images/step_%d" % (self.global_step), syn_src_grid, step)
syn_src_disp_grid = torchvision.utils.make_grid(
disparity_normalization_vis(visualization_dict["src_disparity_syn"])
)
self.tb_writer.add_image(
"03_syn_src_disparity_map/step_%d" % (self.global_step), syn_src_disp_grid, step)
# write synthesized tgt rgb & depth
syn_tgt_grid = torchvision.utils.make_grid(visualization_dict["tgt_imgs_syn"])
self.tb_writer.add_image(
"04_syn_tgt_images/step_%d" % (self.global_step), syn_tgt_grid, step)
syn_tgt_disp_grid = torchvision.utils.make_grid(
disparity_normalization_vis(visualization_dict["tgt_disparity_syn"])
)
self.tb_writer.add_image(
"05_syn_tgt_disparity_map/step_%d" % (self.global_step), syn_tgt_disp_grid, step)
def log_training(self, epoch, step, global_step, dataset_length, loss_dict):
loss = loss_dict["loss"]
loss_disp_pt3dsrc = loss_dict["loss_disp_pt3dsrc"]
loss_rgb_tgt = loss_dict["loss_rgb_tgt"]
loss_ssim_tgt = loss_dict["loss_ssim_tgt"]
loss_rgb_src = loss_dict["loss_rgb_src"]
loss_ssim_src = loss_dict["loss_ssim_src"]
loss_disp_pt3dtgt = loss_dict["loss_disp_pt3dtgt"]
loss_smooth_src = loss_dict["loss_smooth_src"]
loss_smooth_tgt = loss_dict["loss_smooth_tgt"]
self.logger.info(
"epoch [%.3d] step [%d/%d] global_step = %d total_loss = %.4f encoder_lr = %.7f\n"
" src: rgb = %.4f\n"
" src: ssim = %.4f\n"
" src: smooth = %.4f\n"
" src: disp_pt3d = %.4f\n"
" tgt: rgb = %.4f\n"
" tgt: ssim = %.4f\n"
" tgt: smooth = %.4f\n"
" tgt: disp_pt3d = %.4f" %
(epoch, step, dataset_length, self.global_step,
loss.item(), self.optimizer.param_groups[0]["lr"],
loss_rgb_src.item(),
loss_ssim_src.item(),
loss_smooth_src.item(),
loss_disp_pt3dsrc.item(),
loss_rgb_tgt.item(),
loss_ssim_tgt.item(),
loss_smooth_tgt.item(),
loss_disp_pt3dtgt.item())
)
# Write losses to tensorboard
# Update avg meters
for key, value in self.train_losses.items():
self.tb_writer.add_scalar(key + "/train", loss_dict[key].item(), global_step)
value.update(loss_dict[key].item())
def train_epoch(self, train_data_loader, val_data_loader, epoch):
if hasattr(train_data_loader, "sampler"):
train_data_loader.sampler.set_epoch(epoch)
self.backbone.train()
self.decoder.train()
self.current_epoch = epoch
self.config["current_epoch"] = epoch
# clear train losses average meter
for train_loss_item in self.train_losses.values():
train_loss_item.reset()
# iterate over the dataloader
for step, items in enumerate(train_data_loader):
step += 1
self.global_step += 1
self.set_data(items)
loss_dict, visualization_dict = self.loss_fcn(is_val=False)
loss = loss_dict["loss"]
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# logging
if step > 0 and step % 10 == 0 and self.config["global_rank"] == 0:
self.log_training(self.current_epoch,
step,
self.global_step,
len(train_data_loader),
loss_dict)
if step > 0 and step % 5000 == 0 and self.config["global_rank"] == 0:
# Save model and put checkpoint to hdfs
checkpoint_path = os.path.join(self.config["local_workspace"],
"checkpoint_latest.pth")
torch.save({"backbone": self.backbone.state_dict(),
"decoder": self.decoder.state_dict(),
"optimizer": self.optimizer.state_dict()}, checkpoint_path)
self.logger.info("Latest checkpoint saved at {}".format(checkpoint_path))
if "hdfs_workspace" in self.config:
run_shell_cmd(["hdfs", "dfs", "-put", "-f", checkpoint_path,
self.config["hdfs_workspace"]], self.logger)
run_shell_cmd(["hdfs", "dfs", "-put", "-f", self.config["log_file"],
self.config["hdfs_workspace"]], self.logger)
if self.config["global_rank"] == 0 \
and self.global_step > 0 \
and (self.global_step == 2000 or (self.global_step % self.config["training.eval_interval"] == 0)):
self.run_eval(val_data_loader)
# Save model and put checkpoint to hdfs
checkpoint_path = os.path.join(self.config["local_workspace"],
"checkpoint_%012d.pth" % self.global_step)
tb_event_path = sorted(glob.glob(os.path.join(self.config["local_workspace"],
"events.out.tfevents.*")))[-1]
torch.save({"backbone": self.backbone.state_dict(),
"decoder": self.decoder.state_dict()},
checkpoint_path)
if "hdfs_workspace" in self.config:
run_shell_cmd(["hdfs", "dfs", "-put", "-f", checkpoint_path,
self.config["hdfs_workspace"]], self.logger)
run_shell_cmd(["hdfs", "dfs", "-put", "-f", self.config["log_file"],
self.config["hdfs_workspace"]], self.logger)
run_shell_cmd(["hdfs", "dfs", "-put", "-f", tb_event_path,
self.config["hdfs_workspace"]], self.logger)
def train(self, train_data_loader, val_data_loader):
for epoch in range(1, self.config["training.epochs"] + 1):
self.current_epoch = epoch
self.train_epoch(train_data_loader, val_data_loader, epoch)
self.lr_scheduler.step()
if self.config["global_rank"] == 0:
self.logger.info("Epoch finished, average losses: ")
for v in self.train_losses.values():
self.logger.info(" {}".format(v))