forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_training.py
209 lines (175 loc) · 7.13 KB
/
gan_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MONAI Generative Adversarial Networks Workflow Example
Sample script using MONAI to train a GAN to synthesize images from a latent code.
## Get the dataset
MedNIST.tar.gz link: https://developer.download.nvidia.com/assets/Clara/monai/tutorials/MedNIST.tar.gz
Extract tarball and set input_dir variable. GAN script trains using hand CT scan jpg images.
Dataset information available in MedNIST Tutorial
https://github.com/Project-MONAI/tutorials/blob/main/2d_classification/mednist_tutorial.ipynb
"""
import logging
import os
import sys
import torch
import numpy as np
import monai
from monai.apps.utils import download_and_extract
from monai.data import CacheDataset, DataLoader
from monai.engines import GanTrainer
from monai.engines.utils import GanKeys as Keys
from monai.engines.utils import default_make_latent as make_latent
from monai.handlers import CheckpointSaver, StatsHandler
from monai.networks import normal_init
from monai.networks.nets import Discriminator, Generator
from monai.transforms import (
EnsureChannelFirstD,
Compose,
LoadImageD,
RandFlipD,
RandRotateD,
RandZoomD,
ScaleIntensityD,
EnsureTypeD,
)
from monai.utils.misc import set_determinism
from monai.data.image_writer import PILWriter
def main():
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
set_determinism(12345)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load real data
mednist_url = "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/MedNIST.tar.gz"
md5_value = "0bc7306e7427e00ad1c5526a6677552d"
extract_dir = "data"
tar_save_path = os.path.join(extract_dir, "MedNIST.tar.gz")
download_and_extract(mednist_url, tar_save_path, extract_dir, md5_value)
hand_dir = os.path.join(extract_dir, "MedNIST", "Hand")
real_data = [{"hand": os.path.join(hand_dir, filename)} for filename in os.listdir(hand_dir)]
# define real data transforms
train_transforms = Compose(
[
LoadImageD(keys=["hand"]),
EnsureChannelFirstD(keys=["hand"], channel_dim="no_channel"),
ScaleIntensityD(keys=["hand"]),
RandRotateD(keys=["hand"], range_x=np.pi / 12, prob=0.5, keep_size=True),
RandFlipD(keys=["hand"], spatial_axis=0, prob=0.5),
RandZoomD(keys=["hand"], min_zoom=0.9, max_zoom=1.1, prob=0.5),
EnsureTypeD(keys=["hand"]),
]
)
# create dataset and dataloader
real_dataset = CacheDataset(real_data, train_transforms)
batch_size = 300
real_dataloader = DataLoader(real_dataset, batch_size=batch_size, shuffle=True, num_workers=10)
# define function to process batchdata for input into discriminator
def prepare_batch(batchdata, device=None, non_blocking=False):
"""
Process Dataloader batchdata dict object and return image tensors for D Inferer
"""
return batchdata["hand"].to(device=device, non_blocking=non_blocking)
# define networks
disc_net = Discriminator(
in_shape=(1, 64, 64), channels=(8, 16, 32, 64, 1), strides=(2, 2, 2, 2, 1), num_res_units=1, kernel_size=5
).to(device)
latent_size = 64
gen_net = Generator(
latent_shape=latent_size, start_shape=(latent_size, 8, 8), channels=[32, 16, 8, 1], strides=[2, 2, 2, 1]
)
# initialize both networks
disc_net.apply(normal_init)
gen_net.apply(normal_init)
# input images are scaled to [0,1] so enforce the same of generated outputs
gen_net.conv.add_module("activation", torch.nn.Sigmoid())
gen_net = gen_net.to(device)
# create optimizers and loss functions
learning_rate = 2e-4
betas = (0.5, 0.999)
disc_opt = torch.optim.Adam(disc_net.parameters(), learning_rate, betas=betas)
gen_opt = torch.optim.Adam(gen_net.parameters(), learning_rate, betas=betas)
disc_loss_criterion = torch.nn.BCELoss()
gen_loss_criterion = torch.nn.BCELoss()
real_label = 1
fake_label = 0
def discriminator_loss(gen_images, real_images):
"""
The discriminator loss is calculated by comparing D
prediction for real and generated images.
"""
real = real_images.new_full((real_images.shape[0], 1), real_label)
gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)
realloss = disc_loss_criterion(disc_net(real_images), real)
genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)
return (genloss + realloss) / 2
def generator_loss(gen_images):
"""
The generator loss is calculated by determining how realistic
the discriminator classifies the generated images.
"""
output = disc_net(gen_images)
cats = output.new_full(output.shape, real_label)
return gen_loss_criterion(output, cats)
# initialize current run dir
run_dir = "model_out"
print("Saving model output to: %s " % run_dir)
# create workflow handlers
handlers = [
StatsHandler(
name="batch_training_loss",
output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]},
),
CheckpointSaver(
save_dir=run_dir,
save_dict={"g_net": gen_net, "d_net": disc_net},
save_interval=10,
save_final=True,
epoch_level=True,
),
]
# define key metric
key_train_metric = None
# create adversarial trainer
disc_train_steps = 5
num_epochs = 50
trainer = GanTrainer(
device,
num_epochs,
real_dataloader,
gen_net,
gen_opt,
generator_loss,
disc_net,
disc_opt,
discriminator_loss,
d_prepare_batch=prepare_batch,
d_train_steps=disc_train_steps,
latent_shape=latent_size,
key_train_metric=key_train_metric,
train_handlers=handlers,
)
# run GAN training
trainer.run()
# Training completed, save a few random generated images.
print("Saving trained generator sample output.")
test_img_count = 10
test_latents = make_latent(test_img_count, latent_size).to(device)
fakes = gen_net(test_latents)
writer_obj = PILWriter(output_dtype=np.uint8)
for i, image in enumerate(fakes):
filename = f"gen-fake-final-{i}.png"
save_path = os.path.join(run_dir, filename)
img_array = monai.transforms.utils.rescale_array(image[0].cpu().data.numpy())
writer_obj.set_data_array(img_array, channel_dim=None)
writer_obj.write(save_path, format="PNG")
if __name__ == "__main__":
main()