forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 2
/
clustergan.py
566 lines (445 loc) · 17.8 KB
/
clustergan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
from __future__ import print_function
try:
import argparse
import os
import numpy as np
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from itertools import chain as ichain
except ImportError as e:
print(e)
raise ImportError
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser(description="ClusterGAN Training Script")
parser.add_argument("-n", "--n_epochs", dest="n_epochs", default=200, type=int, help="Number of epochs")
parser.add_argument("-b", "--batch_size", dest="batch_size", default=64, type=int, help="Batch size")
parser.add_argument("-i", "--img_size", dest="img_size", type=int, default=28, help="Size of image dimension")
parser.add_argument("-d", "--latent_dim", dest="latent_dim", default=30, type=int, help="Dimension of latent space")
parser.add_argument("-l", "--lr", dest="learning_rate", type=float, default=0.0001, help="Learning rate")
parser.add_argument("-c", "--n_critic", dest="n_critic", type=int, default=5, help="Number of training steps for discriminator per iter")
parser.add_argument("-w", "--wass_flag", dest="wass_flag", action='store_true', help="Flag for Wasserstein metric")
args = parser.parse_args()
# Sample a random latent space vector
def sample_z(shape=64, latent_dim=10, n_c=10, fix_class=-1, req_grad=False):
assert (fix_class == -1 or (fix_class >= 0 and fix_class < n_c) ), "Requested class %i outside bounds."%fix_class
Tensor = torch.cuda.FloatTensor
# Sample noise as generator input, zn
zn = Variable(Tensor(0.75*np.random.normal(0, 1, (shape, latent_dim))), requires_grad=req_grad)
######### zc, zc_idx variables with grads, and zc to one-hot vector
# Pure one-hot vector generation
zc_FT = Tensor(shape, n_c).fill_(0)
zc_idx = torch.empty(shape, dtype=torch.long)
if (fix_class == -1):
zc_idx = zc_idx.random_(n_c).cuda()
zc_FT = zc_FT.scatter_(1, zc_idx.unsqueeze(1), 1.)
else:
zc_idx[:] = fix_class
zc_FT[:, fix_class] = 1
zc_idx = zc_idx.cuda()
zc_FT = zc_FT.cuda()
zc = Variable(zc_FT, requires_grad=req_grad)
# Return components of latent space variable
return zn, zc, zc_idx
def calc_gradient_penalty(netD, real_data, generated_data):
# GP strength
LAMBDA = 10
b_size = real_data.size()[0]
# Calculate interpolation
alpha = torch.rand(b_size, 1, 1, 1)
alpha = alpha.expand_as(real_data)
alpha = alpha.cuda()
interpolated = alpha * real_data.data + (1 - alpha) * generated_data.data
interpolated = Variable(interpolated, requires_grad=True)
interpolated = interpolated.cuda()
# Calculate probability of interpolated examples
prob_interpolated = netD(interpolated)
# Calculate gradients of probabilities with respect to examples
gradients = torch_grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(prob_interpolated.size()).cuda(),
create_graph=True, retain_graph=True)[0]
# Gradients have shape (batch_size, num_channels, img_width, img_height),
# so flatten to easily take norm per example in batch
gradients = gradients.view(b_size, -1)
# Derivatives of the gradient close to 0 can cause problems because of
# the square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Return gradient penalty
return LAMBDA * ((gradients_norm - 1) ** 2).mean()
# Weight Initializer
def initialize_weights(net):
for m in net.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
# Softmax function
def softmax(x):
return F.softmax(x, dim=1)
class Reshape(nn.Module):
"""
Class for performing a reshape as a layer in a sequential model.
"""
def __init__(self, shape=[]):
super(Reshape, self).__init__()
self.shape = shape
def forward(self, x):
return x.view(x.size(0), *self.shape)
def extra_repr(self):
# (Optional)Set the extra information about this module. You can test
# it by printing an object of this class.
return 'shape={}'.format(
self.shape
)
class Generator_CNN(nn.Module):
"""
CNN to model the generator of a ClusterGAN
Input is a vector from representation space of dimension z_dim
output is a vector from image space of dimension X_dim
"""
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
def __init__(self, latent_dim, n_c, x_shape, verbose=False):
super(Generator_CNN, self).__init__()
self.name = 'generator'
self.latent_dim = latent_dim
self.n_c = n_c
self.x_shape = x_shape
self.ishape = (128, 7, 7)
self.iels = int(np.prod(self.ishape))
self.verbose = verbose
self.model = nn.Sequential(
# Fully connected layers
torch.nn.Linear(self.latent_dim + self.n_c, 1024),
nn.BatchNorm1d(1024),
nn.LeakyReLU(0.2, inplace=True),
torch.nn.Linear(1024, self.iels),
nn.BatchNorm1d(self.iels),
nn.LeakyReLU(0.2, inplace=True),
# Reshape to 128 x (7x7)
Reshape(self.ishape),
# Upconvolution layers
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1, bias=True),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(64, 1, 4, stride=2, padding=1, bias=True),
nn.Sigmoid()
)
initialize_weights(self)
if self.verbose:
print("Setting up {}...\n".format(self.name))
print(self.model)
def forward(self, zn, zc):
z = torch.cat((zn, zc), 1)
x_gen = self.model(z)
# Reshape for output
x_gen = x_gen.view(x_gen.size(0), *self.x_shape)
return x_gen
class Encoder_CNN(nn.Module):
"""
CNN to model the encoder of a ClusterGAN
Input is vector X from image space if dimension X_dim
Output is vector z from representation space of dimension z_dim
"""
def __init__(self, latent_dim, n_c, verbose=False):
super(Encoder_CNN, self).__init__()
self.name = 'encoder'
self.channels = 1
self.latent_dim = latent_dim
self.n_c = n_c
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.verbose = verbose
self.model = nn.Sequential(
# Convolutional layers
nn.Conv2d(self.channels, 64, 4, stride=2, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, bias=True),
nn.LeakyReLU(0.2, inplace=True),
# Flatten
Reshape(self.lshape),
# Fully connected layers
torch.nn.Linear(self.iels, 1024),
nn.LeakyReLU(0.2, inplace=True),
torch.nn.Linear(1024, latent_dim + n_c)
)
initialize_weights(self)
if self.verbose:
print("Setting up {}...\n".format(self.name))
print(self.model)
def forward(self, in_feat):
z_img = self.model(in_feat)
# Reshape for output
z = z_img.view(z_img.shape[0], -1)
# Separate continuous and one-hot components
zn = z[:, 0:self.latent_dim]
zc_logits = z[:, self.latent_dim:]
# Softmax on zc component
zc = softmax(zc_logits)
return zn, zc, zc_logits
class Discriminator_CNN(nn.Module):
"""
CNN to model the discriminator of a ClusterGAN
Input is tuple (X,z) of an image vector and its corresponding
representation z vector. For example, if X comes from the dataset, corresponding
z is Encoder(X), and if z is sampled from representation space, X is Generator(z)
Output is a 1-dimensional value
"""
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S
def __init__(self, wass_metric=False, verbose=False):
super(Discriminator_CNN, self).__init__()
self.name = 'discriminator'
self.channels = 1
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.wass = wass_metric
self.verbose = verbose
self.model = nn.Sequential(
# Convolutional layers
nn.Conv2d(self.channels, 64, 4, stride=2, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, bias=True),
nn.LeakyReLU(0.2, inplace=True),
# Flatten
Reshape(self.lshape),
# Fully connected layers
torch.nn.Linear(self.iels, 1024),
nn.LeakyReLU(0.2, inplace=True),
torch.nn.Linear(1024, 1),
)
# If NOT using Wasserstein metric, final Sigmoid
if (not self.wass):
self.model = nn.Sequential(self.model, torch.nn.Sigmoid())
initialize_weights(self)
if self.verbose:
print("Setting up {}...\n".format(self.name))
print(self.model)
def forward(self, img):
# Get output
validity = self.model(img)
return validity
# Training details
n_epochs = args.n_epochs
batch_size = args.batch_size
test_batch_size = 5000
lr = args.learning_rate
b1 = 0.5
b2 = 0.9
decay = 2.5*1e-5
n_skip_iter = args.n_critic
# Data dimensions
img_size = args.img_size
channels = 1
# Latent space info
latent_dim = args.latent_dim
n_c = 10
betan = 10
betac = 10
# Wasserstein+GP metric flag
wass_metric = args.wass_flag
x_shape = (channels, img_size, img_size)
cuda = True if torch.cuda.is_available() else False
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Loss function
bce_loss = torch.nn.BCELoss()
xe_loss = torch.nn.CrossEntropyLoss()
mse_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator_CNN(latent_dim, n_c, x_shape)
encoder = Encoder_CNN(latent_dim, n_c)
discriminator = Discriminator_CNN(wass_metric=wass_metric)
if cuda:
generator.cuda()
encoder.cuda()
discriminator.cuda()
bce_loss.cuda()
xe_loss.cuda()
mse_loss.cuda()
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor()]
),
),
batch_size=batch_size,
shuffle=True,
)
# Test data loader
testdata = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=False,
download=True,
transform=transforms.Compose(
[transforms.ToTensor()]
),
),
batch_size=batch_size,
shuffle=True,
)
test_imgs, test_labels = next(iter(testdata))
test_imgs = Variable(test_imgs.type(Tensor))
ge_chain = ichain(generator.parameters(),
encoder.parameters())
optimizer_GE = torch.optim.Adam(ge_chain, lr=lr, betas=(b1, b2), weight_decay=decay)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
# ----------
# Training
# ----------
ge_l = []
d_l = []
c_zn = []
c_zc = []
c_i = []
# Training loop
print('\nBegin training session with %i epochs...\n'%(n_epochs))
for epoch in range(n_epochs):
for i, (imgs, itruth_label) in enumerate(dataloader):
# Ensure generator/encoder are trainable
generator.train()
encoder.train()
# Zero gradients for models
generator.zero_grad()
encoder.zero_grad()
discriminator.zero_grad()
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# ---------------------------
# Train Generator + Encoder
# ---------------------------
optimizer_GE.zero_grad()
# Sample random latent variables
zn, zc, zc_idx = sample_z(shape=imgs.shape[0],
latent_dim=latent_dim,
n_c=n_c)
# Generate a batch of images
gen_imgs = generator(zn, zc)
# Discriminator output from real and generated samples
D_gen = discriminator(gen_imgs)
D_real = discriminator(real_imgs)
# Step for Generator & Encoder, n_skip_iter times less than for discriminator
if (i % n_skip_iter == 0):
# Encode the generated images
enc_gen_zn, enc_gen_zc, enc_gen_zc_logits = encoder(gen_imgs)
# Calculate losses for z_n, z_c
zn_loss = mse_loss(enc_gen_zn, zn)
zc_loss = xe_loss(enc_gen_zc_logits, zc_idx)
# Check requested metric
if wass_metric:
# Wasserstein GAN loss
ge_loss = torch.mean(D_gen) + betan * zn_loss + betac * zc_loss
else:
# Vanilla GAN loss
valid = Variable(Tensor(gen_imgs.size(0), 1).fill_(1.0), requires_grad=False)
v_loss = bce_loss(D_gen, valid)
ge_loss = v_loss + betan * zn_loss + betac * zc_loss
ge_loss.backward(retain_graph=True)
optimizer_GE.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
if wass_metric:
# Gradient penalty term
grad_penalty = calc_gradient_penalty(discriminator, real_imgs, gen_imgs)
# Wasserstein GAN loss w/gradient penalty
d_loss = torch.mean(D_real) - torch.mean(D_gen) + grad_penalty
else:
# Vanilla GAN loss
fake = Variable(Tensor(gen_imgs.size(0), 1).fill_(0.0), requires_grad=False)
real_loss = bce_loss(D_real, valid)
fake_loss = bce_loss(D_gen, fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Save training losses
d_l.append(d_loss.item())
ge_l.append(ge_loss.item())
# Generator in eval mode
generator.eval()
encoder.eval()
# Set number of examples for cycle calcs
n_sqrt_samp = 5
n_samp = n_sqrt_samp * n_sqrt_samp
## Cycle through test real -> enc -> gen
t_imgs, t_label = test_imgs.data, test_labels
# Encode sample real instances
e_tzn, e_tzc, e_tzc_logits = encoder(t_imgs)
# Generate sample instances from encoding
teg_imgs = generator(e_tzn, e_tzc)
# Calculate cycle reconstruction loss
img_mse_loss = mse_loss(t_imgs, teg_imgs)
# Save img reco cycle loss
c_i.append(img_mse_loss.item())
## Cycle through randomly sampled encoding -> generator -> encoder
zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_samp,
latent_dim=latent_dim,
n_c=n_c)
# Generate sample instances
gen_imgs_samp = generator(zn_samp, zc_samp)
# Encode sample instances
zn_e, zc_e, zc_e_logits = encoder(gen_imgs_samp)
# Calculate cycle latent losses
lat_mse_loss = mse_loss(zn_e, zn_samp)
lat_xe_loss = xe_loss(zc_e_logits, zc_samp_idx)
# Save latent space cycle losses
c_zn.append(lat_mse_loss.item())
c_zc.append(lat_xe_loss.item())
# Save cycled and generated examples!
r_imgs, i_label = real_imgs.data[:n_samp], itruth_label[:n_samp]
e_zn, e_zc, e_zc_logits = encoder(r_imgs)
reg_imgs = generator(e_zn, e_zc)
save_image(reg_imgs.data[:n_samp],
'images/cycle_reg_%06i.png' %(epoch),
nrow=n_sqrt_samp, normalize=True)
save_image(gen_imgs_samp.data[:n_samp],
'images/gen_%06i.png' %(epoch),
nrow=n_sqrt_samp, normalize=True)
## Generate samples for specified classes
stack_imgs = []
for idx in range(n_c):
# Sample specific class
zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_c,
latent_dim=latent_dim,
n_c=n_c,
fix_class=idx)
# Generate sample instances
gen_imgs_samp = generator(zn_samp, zc_samp)
if (len(stack_imgs) == 0):
stack_imgs = gen_imgs_samp
else:
stack_imgs = torch.cat((stack_imgs, gen_imgs_samp), 0)
# Save class-specified generated examples!
save_image(stack_imgs,
'images/gen_classes_%06i.png' %(epoch),
nrow=n_c, normalize=True)
print ("[Epoch %d/%d] \n"\
"\tModel Losses: [D: %f] [GE: %f]" % (epoch,
n_epochs,
d_loss.item(),
ge_loss.item())
)
print("\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]"%(img_mse_loss.item(),
lat_mse_loss.item(),
lat_xe_loss.item())
)