-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
207 lines (159 loc) · 8.88 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from tqdm import tqdm
import argparse
import time
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import random
import torch
from torch_geometric.loader import DataLoader
import torch_geometric.transforms as T
import torch.optim as optim
import torch.nn.functional as F
import wandb
from gnn import GNN
from util import read_file, separate_data, find_dataset_using_name
from evaluate import Evaluator, plot_confusion_matrix
def eval(model, device, loader, evaluator):
model.eval()
y_true = []
y_pred = []
y_prob = []
for step, graphs in enumerate(tqdm(loader, desc="Iteration")):
graphs = graphs.to(device)
if graphs.x.shape[0] == 1:
pass
else:
with torch.no_grad():
pred = model(graphs)
y_true.append(graphs.y.view(-1, 1).detach().cpu())
y_pred.append(torch.argmax(pred.detach(), dim=1).view(-1,1).cpu())
y_prob.append(F.softmax(pred.detach(), dim=1).cpu())
y_true = torch.cat(y_true, dim = 0).numpy()
y_pred = torch.cat(y_pred, dim = 0).numpy()
y_prob = torch.cat(y_prob, dim = 0).numpy()
input_dict = {"y_true": y_true, "y_pred": y_pred, "y_prob": y_prob}
plot_dict = {"y_true": y_true, "y_prob": y_prob}
test_perf = evaluator.eval(input_dict)
return test_perf, plot_dict
def main():
# Training settings
parser = argparse.ArgumentParser(description='GNN baselines on ogbg-ppa data with Pytorch Geometrics')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--gnn', type=str, default='gin',
help='GNN gin, gin-virtual, or gcn, or gcn-virtual (default: gin-virtual)')
parser.add_argument('--num_layer', type=int, default=3,
help='number of GNN message passing layers (default: 5)')
parser.add_argument('--emb_dim', type=int, default=128,
help='dimensionality of hidden units in GNNs (default: 300)')
parser.add_argument('--drop_ratio', type=float, default=0.2,
help='dropout ratio (default: 0.5)')
parser.add_argument('--jk', type=str, default='sum',
help='Jumping knowledge aggregations : last | sum')
parser.add_argument('--graph_pooling', type=str, default='gmt',
help='Graph pooling type : sum | mean | max | attention | set2set')
parser.add_argument('--seed', type=int, default=42,
help='random seed for splitting the dataset into 10 (default: 0)')
parser.add_argument('--batch_size', type=int, default=1,
help='input batch size for training (default: 1)')
parser.add_argument('--num_workers', type=int, default=0,
help='number of workers (default: 0)')
parser.add_argument('--dataset', type=str, default="cptac",
help='dataset name (default: pcga)')
parser.add_argument('--phase', type=str, default="test",
help='dataset phase : train | test | cams')
parser.add_argument('--n_classes', type=int, default=3,
help='Number of classes')
parser.add_argument('--data_config', type=str, default="ctranspath_files",
help='dataset config i.e tile size and bkg content (default: 2048pxTiles_75Bkg)')
parser.add_argument('--fdim', type=int, default=512,
help='expected feature dim for each node.')
parser.add_argument('--n_folds', type=int, default=1,
help='total number of folds.')
parser.add_argument('--config_file', type=str, default="configs/test_config.yaml",
help='parameter and hyperparameter config i.e all values for model and dataset parameters')
parser.add_argument('--project_name', type=str, default=None,
help='parameter and hyperparameter config i.e all values for model and dataset parameters')
args = parser.parse_args()
if args.project_name is None:
# read the yaml file and get the project name
if args.config_file is not None:
import yaml
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
with open(args.config_file, 'r') as f:
config = yaml.load(f, Loader=Loader)
args.project_name = config['run_name']['value']
wandb.init(project=args.project_name, config = args.config_file)
run_name = args.project_name
wandb.run.name = wandb.config.run_name + "_{}_test".format(wandb.config.dataset)
wandb.config.update({'run_name': wandb.run.name,
'log_path': os.path.join('logs', run_name),
'device': args.device}, allow_val_change=True)
config = wandb.config
os.makedirs("{}_{}_test".format(config.log_path, wandb.config.dataset), exist_ok=True)
print(config)
### set up seeds and gpu device
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device("cuda:{}".format(config.device)) if torch.cuda.is_available() else torch.device("cpu")
print('Evaluating...', config.dataset.upper())
plot_dicts = [] # plot dicts per fold
score_dicts = [] # scores per fold
cm_plots = [] # cm per fold
for fold_idx in range(config.n_folds):
### automatic dataloading and splitting
dataset_class = find_dataset_using_name(config.dataset)
if config.dataset == 'tcga':
wsi_file = os.path.join(f'{config.log_path}_fold_{fold_idx}', f'{run_name}_fold_{fold_idx}_fold_{fold_idx}_test.txt')
test_ids = read_file(wsi_file)
test_ids = list(filter(lambda x: x != '\n', test_ids))
# _, test_ids, _ = separate_data(wsi_ids, config.seed, config.n_folds, fold_idx)
else:
wsi_file = os.path.join('/SeaExp/Rushin/datasets', config.dataset.upper(), '{}_{}.txt'.format(config.dataset.upper(), config.phase))
test_ids = read_file(wsi_file)
root = os.path.join('/SeaExp/Rushin/datasets', config.dataset.upper(), config.data_config)
test_dataset = dataset_class(root, test_ids, config.fdim, config.n_classes, isTrain=False, transform=T.ToSparseTensor(remove_edge_index=False))
test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True)
# Load Evaluator based on the dataset
evaluator = Evaluator(test_dataset)
# initialize model with trained weights
model = GNN(gnn_type = config.gnn, num_class = test_dataset.num_classes, num_layer = config.num_layer, input_dim = config.fdim, emb_dim = config.emb_dim, drop_ratio = config.drop_ratio, JK = config.jk, graph_pooling = config.graph_pooling).to(device)
model_load_path = os.path.join(f'{config.log_path}_fold_{fold_idx}', f'final_model_{run_name}_fold_{fold_idx}.pth')
print(model_load_path)
model.load_state_dict(torch.load(model_load_path))
model = model.to(device)
print("model weights loaded successfully")
# Perform testing. "test_perf" is a dictionary
test_perf, plot_dict = eval(model, device, test_loader, evaluator)
print('Testing', test_perf)
score_dicts.append(test_perf)
plot_dicts.append(plot_dict)
cm_plots.append(plot_confusion_matrix(test_perf['cm'], list(test_dataset.classdict.keys()), title='fold{}(Test accuracy={:0.2f})'.format(fold_idx+1, test_perf['acc'])))
with open(os.path.join("{}_{}_test".format(config.log_path, wandb.config.dataset), "{}_fold_{}_test_perf.txt".format(run_name, fold_idx)), 'w') as f:
f.write('Fold {}:\n'.format(fold_idx))
for key, value in test_perf.items():
f.write('{}:{}\n'.format(key, value))
wandb.log({"TestCM_fold_{}".format(idx+1): cm_plots[idx] for idx in range(config.n_folds)})
test_plot_curves = evaluator.plot_curves(plot_dicts)
average_scores = evaluator.average_scores(score_dicts)
print(average_scores)
wandb.log({"PR_Curve": wandb.Image(test_plot_curves['pr'])})
wandb.log({"ROC_Curve": wandb.Image(test_plot_curves['roc'])})
with open(os.path.join("{}_{}_{}".format(config.log_path, wandb.config.dataset, 'test'), '{}_avg_test_perf.txt'.format(run_name)), 'w') as f:
for key, metric_dict in average_scores.items():
f.write('{}:\n'.format(key))
for k, v in metric_dict.items():
f.write('{}:{}\n'.format(k, v))
wandb.finish()
if __name__ == "__main__":
main()