forked from ErasmusMC-NeuroOnco/DeepDicomSort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSort_to_BIDS.py
137 lines (104 loc) · 4.64 KB
/
Sort_to_BIDS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import os
import shutil
import yaml
import json
BIDS_VERSION = 'v1.2.1'
def create_directory(dir):
if not os.path.exists(dir):
os.makedirs(dir)
with open('./config.yaml', 'r') as ymlfile:
cfg = yaml.load(ymlfile)
prediction_file = cfg['post_processing']['prediction_file']
root_dicom_folder = cfg['preprocessing']['root_dicom_folder']
base_dir = os.path.dirname(os.path.normpath(root_dicom_folder))
nifti_dir = os.path.join(base_dir, 'NIFTI')
base_dir = os.path.dirname(os.path.normpath(root_dicom_folder))
root_out_folder = os.path.join(base_dir, 'BIDS_SORTED')
os.makedirs(root_out_folder, exist_ok=True)
predictions = np.loadtxt(prediction_file, dtype=np.str)
prediction_names = ['T1', 'T1GD', 'T2', 'PD', 'FLAIR', 'DWI_DWI', 'DERIVED', 'PWI_DSC', 'UNKNOWN']
orientation_names = ['3D', 'Ax', 'Cor', 'Sag', 'Obl', '4D', 'UNKNOWN']
prediction_file_names = predictions[:, 0]
prediction_results = predictions[:, 1].astype(np.int)
file_names = [i_file_name.split(os.sep)[-1] for i_file_name in prediction_file_names]
unique_names = np.unique(file_names)
unique_predictions = np.zeros([len(unique_names), 1])
out_json = {'Name': 'DDS_sorted_dataset',
'BIDSVersion': BIDS_VERSION}
with open(os.path.join(root_out_folder, 'dataset_description.json'), 'w') as jf:
json.dump(out_json, jf)
def get_out_file_name(subject_label, session_label, sub_type,
ce_label, modality_label, run_index):
run_label = 'run-' + str(run_index)
scan_labels = list(filter(None,
[subject_label, session_label,
ce_label, run_label, modality_label]))
out_file_name = '_'.join(scan_labels) + '.nii.gz'
out_directory = os.path.join(root_out_folder, subject_label,
session_label, sub_type)
out_file = os.path.join(out_directory, out_file_name)
return out_file, out_directory
for root, dir, files in os.walk(nifti_dir):
if len(files) > 0:
patient_ID = os.path.basename(os.path.normpath(root))
patient_ID = patient_ID.replace('-', '')
subject_label = 'sub-' + patient_ID
session_dict = dict()
cur_session_index = 1
for i_file in files:
print(i_file)
# Reset everything
sub_type = None
modality_label = None
ce_label = None
session_label = None
full_file = os.path.join(root, i_file)
i_file = i_file.split('.nii.gz')[0]
splitted_elements = i_file.split('__')
session_ID = splitted_elements[2]
if session_ID not in session_dict:
session_dict[session_ID] = cur_session_index
session_num = cur_session_index
cur_session_index += 1
else:
session_num = session_dict[session_ID]
session_label = 'ses-' + str(session_num)
indices = np.argwhere([i_file in i_result_name for i_result_name in file_names])
if len(indices) != 0:
predictions = prediction_results[indices].ravel()
i_prediction = np.bincount(predictions).argmax() - 1
else:
i_prediction = -1
if i_prediction == 0 or i_prediction == 1:
sub_type = 'anat'
modality_label = 'T1w'
if i_prediction == 1:
ce_label = 'ce-GD'
elif i_prediction == 2:
sub_type = 'anat'
modality_label = 'T2w'
elif i_prediction == 3:
sub_type = 'anat'
modality_label = 'PD'
elif i_prediction == 4:
sub_type = 'anat'
modality_label = 'FLAIR'
elif i_prediction == 5:
sub_type = 'dwi'
modality_label = 'dwi'
else:
break
current_run_index = 1
scan_labels = [subject_label, ce_label, modality_label]
out_file, out_directory = get_out_file_name(subject_label, session_label,
sub_type, ce_label, modality_label,
current_run_index)
while os.path.exists(out_file):
current_run_index += 1
out_file, out_directory = get_out_file_name(subject_label, session_label,
sub_type, ce_label, modality_label,
current_run_index)
if not os.path.exists(out_directory):
os.makedirs(out_directory)
shutil.copy(full_file, out_file)