-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfinetuning.py
430 lines (347 loc) · 15.1 KB
/
finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from __future__ import print_function
import json
import os
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
#import wandb
from sklearn.metrics import accuracy_score, average_precision_score
from torch.utils.data import distributed
from torchvision import transforms
from dataset import (ClassificationImageDataset,
MultilabelClassificationImageDataset,
MultispectralRandomHorizontalFlip,
MultispectralRandomResizedCrop, MultispectralResize,
RGB2Lab, ScalerPCA)
from models.alexnet import alexnet, multispectral_alexnet
from models.LinearModel import (LinearClassifierAlexNet,
LinearClassifierResNetV2)
from models.resnet import ResNetV2, multispectral_ResNetV2
from spawn import spawn
from util import AverageMeter, adjust_learning_rate, parse_option
def get_train_val_loader(args):
if not args.multispectral:
multilabel_targets = None
target_transform = None
task_type = 'single-label'
if args.multilabel_targets:
with open(args.multilabel_targets, 'r') as f:
multilabel_targets = json.load(f)
target_transform = torch.tensor
task_type = 'multi-label'
normalize = transforms.Normalize(mean=[(0 + 100) / 2, (-86.183 + 98.233) / 2, (-107.857 + 94.478) / 2],
std=[(100 - 0) / 2, (86.183 + 98.233) / 2, (107.857 + 94.478) / 2])
train_dataset = ClassificationImageDataset(
args.data_folder,
args.train_image_list,
transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224, scale=(args.crop_low, 1.0)),
transforms.RandomHorizontalFlip(),
RGB2Lab(),
transforms.ToTensor(),
normalize,
]),
target_transform=target_transform,
multilabel_targets=multilabel_targets
)
val_dataset = ClassificationImageDataset(
args.data_folder,
args.val_image_list,
transforms.Compose([
transforms.Resize(224),
RGB2Lab(),
transforms.ToTensor(),
normalize,
]),
target_transform=target_transform,
multilabel_targets=multilabel_targets
)
else:
task_type = 'single-label'
target_transform = None
if args.multispectral_dataset == 'BigEarthNet':
target_transform = torch.tensor
task_type = 'multi-label'
train_dataset = MultilabelClassificationImageDataset(
args.data_folder,
args.train_image_list,
transforms.Compose([
MultispectralResize((256, 256)),
MultispectralRandomResizedCrop(224, scale=(args.crop_low, 1.0)),
MultispectralRandomHorizontalFlip(),
ScalerPCA('./scaler_pca', args.pca),
transforms.ToTensor(),
]),
target_transform=target_transform,
dataset=args.multispectral_dataset
)
val_dataset = MultilabelClassificationImageDataset(
args.data_folder,
args.val_image_list,
transforms.Compose([
MultispectralResize((224, 224)),
ScalerPCA('./scaler_pca', args.pca),
transforms.ToTensor(),
]),
target_transform=target_transform,
dataset=args.multispectral_dataset
)
print('number of train: {}'.format(len(train_dataset)))
print('number of val: {}'.format(len(val_dataset)))
if args.distributed:
train_sampler = distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
return train_loader, val_loader, train_sampler, train_dataset.num_classes, task_type
def set_model(args, ngpus_per_node, num_classes, task_type):
if args.model == 'alexnet':
if args.multispectral:
model = multispectral_alexnet(args.feat_dim)
else:
model = alexnet(args.feat_dim)
classifier = LinearClassifierAlexNet(layer=args.layer, n_label=num_classes, pool_type='avg')
elif args.model.startswith('resnet'):
if args.multispectral:
model = multispectral_ResNetV2(args.model)
else:
model = ResNetV2(args.model)
classifier = LinearClassifierResNetV2(layer=args.layer, n_label=num_classes, pool_type='avg')
else:
raise NotImplementedError(args.model)
# load pre-trained model
if not args.resume:
print('==> loading pre-trained model')
ckpt = torch.load(args.model_path)
state_dict = ckpt['model']
has_module = False
for k, v in state_dict.items():
if k.startswith('module'):
has_module = True
if has_module:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(state_dict)
print('==> done')
if args.distributed:
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
classifier.cuda(args.gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.num_workers = int(args.num_workers / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
classifier = torch.nn.parallel.DistributedDataParallel(classifier, device_ids=[args.gpu])
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
classifier.cuda()
classifier = torch.nn.parallel.DistributedDataParallel(classifier)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
classifier = classifier.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
classifier = torch.nn.DataParallel(classifier).cuda()
if task_type == 'single-label':
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
elif task_type == 'multi-label':
criterion = nn.BCEWithLogitsLoss().cuda(args.gpu)
return model, classifier, criterion
def set_optimizer(args, model, classifier):
if args.opt == 'adam':
optimizer = optim.Adam(list(model.parameters()) + list(classifier.parameters()),
lr=args.learning_rate, weight_decay=args.weight_decay)
elif args.opt == 'sgd':
optimizer = optim.SGD(list(model.parameters()) + list(classifier.parameters()),
lr=args.learning_rate, momentum=args.momentum,
weight_decay=args.weight_decay)
return optimizer
def train(epoch, train_loader, model, classifier, criterion, optimizer, task_type, opt):
"""
one epoch training
"""
model.train()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
predictions = []
ground_truth = []
end = time.time()
for idx, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.float()
input = input.cuda(opt.gpu, non_blocking=True)
target = target.cuda(opt.gpu, non_blocking=True)
# ===================forward=====================
feat_l, feat_ab = model(input, opt.layer)
feat = torch.cat((feat_l, feat_ab), dim=1)
output = classifier(feat)
loss = criterion(output, target)
losses.update(loss.item(), input.size(0))
if task_type == 'single-label':
predictions.append(F.softmax(output).cpu().detach().numpy().argmax(axis=1))
elif task_type == 'multi-label':
predictions.append(F.sigmoid(output).cpu().detach().numpy())
ground_truth.append(target.cpu().numpy())
# ===================backward=====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================meters=====================
batch_time.update(time.time() - end)
end = time.time()
# print info
if idx % opt.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch, idx, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
sys.stdout.flush()
predictions = np.concatenate(predictions, axis = 0)
ground_truth = np.concatenate(ground_truth, axis = 0)
if task_type == 'single-label':
metric = accuracy_score(ground_truth, predictions)
elif task_type == 'multi-label':
metric = average_precision_score(ground_truth, predictions, average='macro')
print(metric)
return metric, losses.avg
def validate(val_loader, model, classifier, criterion, task_type, opt):
"""
evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
predictions = []
ground_truth = []
# switch to evaluate mode
model.eval()
classifier.eval()
with torch.no_grad():
end = time.time()
for idx, (input, target) in enumerate(val_loader):
input = input.float()
input = input.cuda(opt.gpu, non_blocking=True)
target = target.cuda(opt.gpu, non_blocking=True)
# compute output
feat_l, feat_ab = model(input, opt.layer)
feat = torch.cat((feat_l, feat_ab), dim=1)
output = classifier(feat)
loss = criterion(output, target)
# measure loss
losses.update(loss.item(), input.size(0))
if task_type == 'single-label':
predictions.append(F.softmax(output).cpu().numpy().argmax(axis=1))
elif task_type == 'multi-label':
predictions.append(F.sigmoid(output).cpu().numpy())
ground_truth.append(target.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
idx, len(val_loader), batch_time=batch_time, loss=losses))
predictions = np.concatenate(predictions, axis = 0)
ground_truth = np.concatenate(ground_truth, axis = 0)
if task_type == 'single-label':
metric = accuracy_score(ground_truth, predictions)
elif task_type == 'multi-label':
metric = average_precision_score(ground_truth, predictions, average='macro')
print(metric)
return metric, losses.avg
def main():
args = parse_option()
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# set the data loader
train_loader, val_loader, train_sampler, num_classes, task_type = get_train_val_loader(args)
# set the model
model, classifier, criterion = set_model(args, ngpus_per_node, num_classes, task_type)
# set optimizer
optimizer = set_optimizer(args, model, classifier)
cudnn.benchmark = True
# optionally resume
args.start_epoch = 1
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
classifier.load_state_dict(checkpoint['classifier'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}'"
.format(args.resume))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
#wandb.init(config=args, project=args.wandb_project)
#wandb.watch(model)
#wandb.watch(classifier)
if args.evaluate:
test_metric, test_loss = validate(val_loader, model, classifier, criterion, task_type, args)
return
# routine
for epoch in range(args.start_epoch, args.epochs + 1):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(epoch, args, optimizer)
print("==> training...")
time1 = time.time()
train_metric, train_loss = train(epoch, train_loader, model, classifier, criterion, optimizer, task_type, args)
time2 = time.time()
print('train epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
#wandb.log({'train_loss': train_loss, 'train_metric': train_metric}, step = epoch)
print("==> testing...")
test_metric, test_loss = validate(val_loader, model, classifier, criterion, task_type, args)
#wandb.log({'val_loss': test_loss, 'val_metric': test_metric}, step = epoch)
# save the model
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
state = {'epoch': epoch,
'classifier': classifier.state_dict(),
'model' : model.state_dict(),
'optimizer': optimizer.state_dict()}
print('saving model!')
torch.save(state, args.save_path)
if __name__ == '__main__':
main()