-
-
Notifications
You must be signed in to change notification settings - Fork 464
/
Copy pathsd_models.py
1737 lines (1603 loc) · 85.8 KB
/
sd_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import re
import io
import sys
import json
import time
import copy
import inspect
import logging
import contextlib
import collections
import os.path
from os import mkdir
from urllib import request
from enum import Enum
import diffusers
import diffusers.loaders.single_file_utils
from rich import progress # pylint: disable=redefined-builtin
import torch
import safetensors.torch
from omegaconf import OmegaConf
from transformers import logging as transformers_logging
from ldm.util import instantiate_from_config
from modules import paths, shared, shared_items, shared_state, modelloader, devices, script_callbacks, sd_vae, sd_unet, errors, hashes, sd_models_config, sd_models_compile, sd_hijack_accelerate
from modules.timer import Timer
from modules.memstats import memory_stats
from modules.modeldata import model_data
transformers_logging.set_verbosity_error()
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
checkpoints_list = {}
checkpoint_aliases = {}
checkpoints_loaded = collections.OrderedDict()
sd_metadata_file = os.path.join(paths.data_path, "metadata.json")
sd_metadata = None
sd_metadata_pending = 0
sd_metadata_timer = 0
debug_move = shared.log.trace if os.environ.get('SD_MOVE_DEBUG', None) is not None else lambda *args, **kwargs: None
debug_load = os.environ.get('SD_LOAD_DEBUG', None)
diffusers_version = int(diffusers.__version__.split('.')[1])
class CheckpointInfo:
def __init__(self, filename, sha=None):
self.name = None
self.hash = sha
self.filename = filename
self.type = ''
relname = filename
app_path = os.path.abspath(paths.script_path)
def rel(fn, path):
try:
return os.path.relpath(fn, path)
except Exception:
return fn
if relname.startswith('..'):
relname = os.path.abspath(relname)
if relname.startswith(shared.opts.ckpt_dir):
relname = rel(filename, shared.opts.ckpt_dir)
elif relname.startswith(shared.opts.diffusers_dir):
relname = rel(filename, shared.opts.diffusers_dir)
elif relname.startswith(model_path):
relname = rel(filename, model_path)
elif relname.startswith(paths.script_path):
relname = rel(filename, paths.script_path)
elif relname.startswith(app_path):
relname = rel(filename, app_path)
else:
relname = os.path.abspath(relname)
relname, ext = os.path.splitext(relname)
ext = ext.lower()[1:]
if os.path.isfile(filename): # ckpt or safetensor
self.name = relname
self.filename = filename
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{relname}")
self.type = ext
else: # maybe a diffuser
if self.hash is None:
repo = [r for r in modelloader.diffuser_repos if self.filename == r['name']]
else:
repo = [r for r in modelloader.diffuser_repos if self.hash == r['hash']]
if len(repo) == 0:
self.name = relname
self.filename = filename
self.sha256 = None
self.type = 'unknown'
else:
self.name = os.path.join(os.path.basename(shared.opts.diffusers_dir), repo[0]['name'])
self.filename = repo[0]['path']
self.sha256 = repo[0]['hash']
self.type = 'diffusers'
self.shorthash = self.sha256[0:10] if self.sha256 else None
self.title = self.name if self.shorthash is None else f'{self.name} [{self.shorthash}]'
self.path = self.filename
self.model_name = os.path.basename(self.name)
self.metadata = read_metadata_from_safetensors(filename)
# shared.log.debug(f'Checkpoint: type={self.type} name={self.name} filename={self.filename} hash={self.shorthash} title={self.title}')
def register(self):
checkpoints_list[self.title] = self
for i in [self.name, self.filename, self.shorthash, self.title]:
if i is not None:
checkpoint_aliases[i] = self
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
if self.sha256 is None:
return None
self.shorthash = self.sha256[0:10]
checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
self.register()
return self.shorthash
class NoWatermark:
def apply_watermark(self, img):
return img
def setup_model():
list_models()
sd_hijack_accelerate.hijack_hfhub()
# sd_hijack_accelerate.hijack_torch_conv()
if not shared.native:
enable_midas_autodownload()
def checkpoint_tiles(use_short=False): # pylint: disable=unused-argument
def convert(name):
return int(name) if name.isdigit() else name.lower()
def alphanumeric_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
def list_models():
t0 = time.time()
global checkpoints_list # pylint: disable=global-statement
checkpoints_list.clear()
checkpoint_aliases.clear()
ext_filter = [".safetensors"] if shared.opts.sd_disable_ckpt or shared.native else [".ckpt", ".safetensors"]
model_list = list(modelloader.load_models(model_path=model_path, model_url=None, command_path=shared.opts.ckpt_dir, ext_filter=ext_filter, download_name=None, ext_blacklist=[".vae.ckpt", ".vae.safetensors"]))
for filename in sorted(model_list, key=str.lower):
checkpoint_info = CheckpointInfo(filename)
if checkpoint_info.name is not None:
checkpoint_info.register()
if shared.native:
for repo in modelloader.load_diffusers_models(clear=True):
checkpoint_info = CheckpointInfo(repo['name'], sha=repo['hash'])
if checkpoint_info.name is not None:
checkpoint_info.register()
if shared.cmd_opts.ckpt is not None:
if not os.path.exists(shared.cmd_opts.ckpt) and not shared.native:
if shared.cmd_opts.ckpt.lower() != "none":
shared.log.warning(f"Requested checkpoint not found: {shared.cmd_opts.ckpt}")
else:
checkpoint_info = CheckpointInfo(shared.cmd_opts.ckpt)
if checkpoint_info.name is not None:
checkpoint_info.register()
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
elif shared.cmd_opts.ckpt != shared.default_sd_model_file and shared.cmd_opts.ckpt is not None:
shared.log.warning(f"Checkpoint not found: {shared.cmd_opts.ckpt}")
shared.log.info(f'Available models: path="{shared.opts.ckpt_dir}" items={len(checkpoints_list)} time={time.time()-t0:.2f}')
checkpoints_list = dict(sorted(checkpoints_list.items(), key=lambda cp: cp[1].filename))
def update_model_hashes():
txt = []
lst = [ckpt for ckpt in checkpoints_list.values() if ckpt.hash is None]
# shared.log.info(f'Models list: short hash missing for {len(lst)} out of {len(checkpoints_list)} models')
for ckpt in lst:
ckpt.hash = model_hash(ckpt.filename)
# txt.append(f'Calculated short hash: <b>{ckpt.title}</b> {ckpt.hash}')
# txt.append(f'Updated short hashes for <b>{len(lst)}</b> out of <b>{len(checkpoints_list)}</b> models')
lst = [ckpt for ckpt in checkpoints_list.values() if ckpt.sha256 is None or ckpt.shorthash is None]
shared.log.info(f'Models list: hash missing={len(lst)} total={len(checkpoints_list)}')
for ckpt in lst:
ckpt.sha256 = hashes.sha256(ckpt.filename, f"checkpoint/{ckpt.name}")
ckpt.shorthash = ckpt.sha256[0:10] if ckpt.sha256 is not None else None
if ckpt.sha256 is not None:
txt.append(f'Calculated full hash: <b>{ckpt.title}</b> {ckpt.shorthash}')
else:
txt.append(f'Skipped hash calculation: <b>{ckpt.title}</b>')
txt.append(f'Updated hashes for <b>{len(lst)}</b> out of <b>{len(checkpoints_list)}</b> models')
txt = '<br>'.join(txt)
return txt
def get_closet_checkpoint_match(search_string):
if search_string.startswith('huggingface/'):
model_name = search_string.replace('huggingface/', '')
checkpoint_info = CheckpointInfo(model_name) # create a virutal model info
checkpoint_info.type = 'huggingface'
return checkpoint_info
checkpoint_info = checkpoint_aliases.get(search_string, None)
if checkpoint_info is not None:
return checkpoint_info
found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
if found:
return found[0]
found = sorted([info for info in checkpoints_list.values() if search_string.split(' ')[0] in info.title], key=lambda x: len(x.title))
if found:
return found[0]
return None
def model_hash(filename):
"""old hash that only looks at a small part of the file and is prone to collisions"""
try:
with open(filename, "rb") as file:
import hashlib
# t0 = time.time()
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
shorthash = m.hexdigest()[0:8]
# t1 = time.time()
# shared.log.debug(f'Calculating short hash: {filename} hash={shorthash} time={(t1-t0):.2f}')
return shorthash
except FileNotFoundError:
return 'NOFILE'
except Exception:
return 'NOHASH'
def select_checkpoint(op='model'):
if op == 'dict':
model_checkpoint = shared.opts.sd_model_dict
elif op == 'refiner':
model_checkpoint = shared.opts.data.get('sd_model_refiner', None)
else:
model_checkpoint = shared.opts.sd_model_checkpoint
if model_checkpoint is None or model_checkpoint == 'None':
return None
checkpoint_info = get_closet_checkpoint_match(model_checkpoint)
if checkpoint_info is not None:
shared.log.info(f'Select: {op}="{checkpoint_info.title if checkpoint_info is not None else None}"')
return checkpoint_info
if len(checkpoints_list) == 0:
shared.log.warning("Cannot generate without a checkpoint")
shared.log.info("Set system paths to use existing folders")
shared.log.info(" or use --models-dir <path-to-folder> to specify base folder with all models")
shared.log.info(" or use --ckpt-dir <path-to-folder> to specify folder with sd models")
shared.log.info(" or use --ckpt <path-to-checkpoint> to force using specific model")
return None
checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None:
if model_checkpoint != 'model.ckpt' and model_checkpoint != 'runwayml/stable-diffusion-v1-5':
shared.log.warning(f"Selected checkpoint not found: {model_checkpoint}")
else:
shared.log.info("Selecting first available checkpoint")
# shared.log.warning(f"Loading fallback checkpoint: {checkpoint_info.title}")
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
shared.log.info(f'Select: {op}="{checkpoint_info.title if checkpoint_info is not None else None}"')
return checkpoint_info
checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def write_metadata():
global sd_metadata_pending # pylint: disable=global-statement
if sd_metadata_pending == 0:
shared.log.debug(f'Model metadata: file="{sd_metadata_file}" no changes')
return
shared.writefile(sd_metadata, sd_metadata_file)
shared.log.info(f'Model metadata saved: file="{sd_metadata_file}" items={sd_metadata_pending} time={sd_metadata_timer:.2f}')
sd_metadata_pending = 0
def scrub_dict(dict_obj, keys):
for key in list(dict_obj.keys()):
if not isinstance(dict_obj, dict):
continue
if key in keys:
dict_obj.pop(key, None)
elif isinstance(dict_obj[key], dict):
scrub_dict(dict_obj[key], keys)
elif isinstance(dict_obj[key], list):
for item in dict_obj[key]:
scrub_dict(item, keys)
def read_metadata_from_safetensors(filename):
global sd_metadata # pylint: disable=global-statement
if sd_metadata is None:
sd_metadata = shared.readfile(sd_metadata_file, lock=True) if os.path.isfile(sd_metadata_file) else {}
res = sd_metadata.get(filename, None)
if res is not None:
return res
if not filename.endswith(".safetensors"):
return {}
if shared.cmd_opts.no_metadata:
return {}
res = {}
# try:
t0 = time.time()
with open(filename, mode="rb") as file:
try:
metadata_len = file.read(8)
metadata_len = int.from_bytes(metadata_len, "little")
json_start = file.read(2)
if metadata_len <= 2 or json_start not in (b'{"', b"{'"):
shared.log.error(f"Model metadata invalid: fn={filename}")
json_data = json_start + file.read(metadata_len-2)
json_obj = json.loads(json_data)
for k, v in json_obj.get("__metadata__", {}).items():
if v.startswith("data:"):
v = 'data'
if k == 'format' and v == 'pt':
continue
large = True if len(v) > 2048 else False
if large and k == 'ss_datasets':
continue
if large and k == 'workflow':
continue
if large and k == 'prompt':
continue
if large and k == 'ss_bucket_info':
continue
if v[0:1] == '{':
try:
v = json.loads(v)
if large and k == 'ss_tag_frequency':
v = { i: len(j) for i, j in v.items() }
if large and k == 'sd_merge_models':
scrub_dict(v, ['sd_merge_recipe'])
except Exception:
pass
res[k] = v
except Exception as e:
shared.log.error(f"Model metadata: fn={filename} {e}")
sd_metadata[filename] = res
global sd_metadata_pending # pylint: disable=global-statement
sd_metadata_pending += 1
t1 = time.time()
global sd_metadata_timer # pylint: disable=global-statement
sd_metadata_timer += (t1 - t0)
# except Exception as e:
# shared.log.error(f"Error reading metadata from: {filename} {e}")
return res
def read_state_dict(checkpoint_file, map_location=None): # pylint: disable=unused-argument
if not os.path.isfile(checkpoint_file):
shared.log.error(f"Model is not a file: {checkpoint_file}")
return None
try:
pl_sd = None
with progress.open(checkpoint_file, 'rb', description=f'[cyan]Loading model: [yellow]{checkpoint_file}', auto_refresh=True, console=shared.console) as f:
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".ckpt" and shared.opts.sd_disable_ckpt:
shared.log.warning(f"Checkpoint loading disabled: {checkpoint_file}")
return None
if shared.opts.stream_load:
if extension.lower() == ".safetensors":
# shared.log.debug('Model weights loading: type=safetensors mode=buffered')
buffer = f.read()
pl_sd = safetensors.torch.load(buffer)
else:
# shared.log.debug('Model weights loading: type=checkpoint mode=buffered')
buffer = io.BytesIO(f.read())
pl_sd = torch.load(buffer, map_location='cpu')
else:
if extension.lower() == ".safetensors":
# shared.log.debug('Model weights loading: type=safetensors mode=mmap')
pl_sd = safetensors.torch.load_file(checkpoint_file, device='cpu')
else:
# shared.log.debug('Model weights loading: type=checkpoint mode=direct')
pl_sd = torch.load(f, map_location='cpu')
sd = get_state_dict_from_checkpoint(pl_sd)
del pl_sd
except Exception as e:
errors.display(e, f'Load model: {checkpoint_file}')
sd = None
return sd
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
if not os.path.isfile(checkpoint_info.filename):
return None
if checkpoint_info in checkpoints_loaded:
shared.log.info("Model weights loading: from cache")
checkpoints_loaded.move_to_end(checkpoint_info, last=True) # FIFO -> LRU cache
return checkpoints_loaded[checkpoint_info]
res = read_state_dict(checkpoint_info.filename)
if shared.opts.sd_checkpoint_cache > 0 and not shared.native:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = res
# clean up cache if limit is reached
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False)
timer.record("load")
return res
def load_model_weights(model: torch.nn.Module, checkpoint_info: CheckpointInfo, state_dict, timer):
_pipeline, _model_type = detect_pipeline(checkpoint_info.path, 'model')
shared.log.debug(f'Model weights loading: {memory_stats()}')
timer.record("hash")
if model_data.sd_dict == 'None':
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
try:
model.load_state_dict(state_dict, strict=False)
except Exception as e:
shared.log.error(f'Error loading model weights: {checkpoint_info.filename}')
shared.log.error(' '.join(str(e).splitlines()[:2]))
return False
del state_dict
timer.record("apply")
if shared.opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
timer.record("channels")
if not shared.opts.no_half:
vae = model.first_stage_model
depth_model = getattr(model, 'depth_model', None)
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.opts.no_half_vae:
model.first_stage_model = None
# with --upcast-sampling, don't convert the depth model weights to float16
if shared.opts.upcast_sampling and depth_model:
model.depth_model = None
model.half()
model.first_stage_model = vae
if depth_model:
model.depth_model = depth_model
if shared.opts.cuda_cast_unet:
devices.dtype_unet = model.model.diffusion_model.dtype
else:
model.model.diffusion_model.to(devices.dtype_unet)
model.first_stage_model.to(devices.dtype_vae)
model.sd_model_hash = checkpoint_info.calculate_shorthash()
model.sd_model_checkpoint = checkpoint_info.filename
model.sd_checkpoint_info = checkpoint_info
model.is_sdxl = False # a1111 compatibility item
model.is_sd2 = hasattr(model.cond_stage_model, 'model') # a1111 compatibility item
model.is_sd1 = not hasattr(model.cond_stage_model, 'model') # a1111 compatibility item
model.logvar = model.logvar.to(devices.device) if hasattr(model, 'logvar') else None # fix for training
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
sd_vae.delete_base_vae()
sd_vae.clear_loaded_vae()
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
sd_vae.load_vae(model, vae_file, vae_source)
timer.record("vae")
return True
def enable_midas_autodownload():
"""
Gives the ldm.modules.midas.api.load_model function automatic downloading.
When the 512-depth-ema model, and other future models like it, is loaded,
it calls midas.api.load_model to load the associated midas depth model.
This function applies a wrapper to download the model to the correct
location automatically.
"""
import ldm.modules.midas.api
midas_path = os.path.join(paths.models_path, 'midas')
for k, v in ldm.modules.midas.api.ISL_PATHS.items():
file_name = os.path.basename(v)
ldm.modules.midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
midas_urls = {
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
}
ldm.modules.midas.api.load_model_inner = ldm.modules.midas.api.load_model
def load_model_wrapper(model_type):
path = ldm.modules.midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
shared.log.info(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
shared.log.info(f"{model_type} downloaded")
return ldm.modules.midas.api.load_model_inner(model_type)
ldm.modules.midas.api.load_model = load_model_wrapper
def repair_config(sd_config):
if "use_ema" not in sd_config.model.params:
sd_config.model.params.use_ema = False
if shared.opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True if sys.platform != 'darwin' else False
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if "noise_aug_config" in sd_config.model.params and "clip_stats_path" in sd_config.model.params.noise_aug_config.params:
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
def change_backend():
shared.log.info(f'Backend changed: from={shared.backend} to={shared.opts.sd_backend}')
shared.log.warning('Full server restart required to apply all changes')
unload_model_weights()
shared.backend = shared.Backend.ORIGINAL if shared.opts.sd_backend == 'original' else shared.Backend.DIFFUSERS
shared.native = shared.backend == shared.Backend.DIFFUSERS
checkpoints_loaded.clear()
from modules.sd_samplers import list_samplers
list_samplers(shared.backend)
list_models()
from modules.sd_vae import refresh_vae_list
refresh_vae_list()
def detect_pipeline(f: str, op: str = 'model', warning=True):
guess = shared.opts.diffusers_pipeline
warn = shared.log.warning if warning else lambda *args, **kwargs: None
size = 0
if guess == 'Autodetect':
try:
guess = 'Stable Diffusion XL' if 'XL' in f.upper() else 'Stable Diffusion'
# guess by size
if os.path.isfile(f) and f.endswith('.safetensors'):
size = round(os.path.getsize(f) / 1024 / 1024)
if size < 128:
warn(f'Model size smaller than expected: {f} size={size} MB')
elif (size >= 316 and size <= 324) or (size >= 156 and size <= 164): # 320 or 160
warn(f'Model detected as VAE model, but attempting to load as model: {op}={f} size={size} MB')
guess = 'VAE'
elif size >= 4970 and size <= 4976: # 4973
guess = 'Stable Diffusion 2' # SD v2 but could be eps or v-prediction
# elif size < 0: # unknown
# guess = 'Stable Diffusion 2B'
elif size >= 5791 and size <= 5799: # 5795
if not shared.native:
warn(f'Model detected as SD-XL refiner model, but attempting to load using backend=original: {op}={f} size={size} MB')
if op == 'model':
warn(f'Model detected as SD-XL refiner model, but attempting to load a base model: {op}={f} size={size} MB')
guess = 'Stable Diffusion XL Refiner'
elif (size >= 6611 and size <= 7220): # 6617, HassakuXL is 6776, monkrenRealisticINT_v10 is 7217
if not shared.native:
warn(f'Model detected as SD-XL base model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion XL'
elif size >= 3361 and size <= 3369: # 3368
if not shared.native:
warn(f'Model detected as SD upscale model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion Upscale'
elif size >= 4891 and size <= 4899: # 4897
if not shared.native:
warn(f'Model detected as SD XL inpaint model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion XL Inpaint'
elif size >= 9791 and size <= 9799: # 9794
if not shared.native:
warn(f'Model detected as SD XL instruct pix2pix model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion XL Instruct'
elif size > 3138 and size < 3142: #3140
if not shared.native:
warn(f'Model detected as Segmind Vega model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion XL'
elif size > 5692 and size < 5698 or size > 4134 and size < 4138:
if not shared.native:
warn(f'Model detected as Stable Diffusion 3 model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion 3'
# guess by name
"""
if 'LCM_' in f.upper() or 'LCM-' in f.upper() or '_LCM' in f.upper() or '-LCM' in f.upper():
if shared.backend == shared.Backend.ORIGINAL:
warn(f'Model detected as LCM model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Latent Consistency Model'
"""
if 'instaflow' in f.lower():
if not shared.native:
warn(f'Model detected as InstaFlow model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'InstaFlow'
if 'segmoe' in f.lower():
if not shared.native:
warn(f'Model detected as SegMoE model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'SegMoE'
if 'hunyuandit' in f.lower():
if not shared.native:
warn(f'Model detected as Tenecent HunyuanDiT model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'HunyuanDiT'
if 'pixart-xl' in f.lower():
if not shared.native:
warn(f'Model detected as PixArt Alpha model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'PixArt-Alpha'
if 'stable-diffusion-3' in f.lower():
if not shared.native:
warn(f'Model detected as Stable Diffusion 3 model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'Stable Diffusion 3'
if 'stable-cascade' in f.lower() or 'stablecascade' in f.lower() or 'wuerstchen3' in f.lower():
if not shared.native:
warn(f'Model detected as Stable Cascade model, but attempting to load using backend=original: {op}={f} size={size} MB')
if devices.dtype == torch.float16:
warn('Stable Cascade does not support Float16')
guess = 'Stable Cascade'
if 'pixart-sigma' in f.lower():
if not shared.native:
warn(f'Model detected as PixArt-Sigma model, but attempting to load using backend=original: {op}={f} size={size} MB')
guess = 'PixArt-Sigma'
# switch for specific variant
if guess == 'Stable Diffusion' and 'inpaint' in f.lower():
guess = 'Stable Diffusion Inpaint'
elif guess == 'Stable Diffusion' and 'instruct' in f.lower():
guess = 'Stable Diffusion Instruct'
if guess == 'Stable Diffusion XL' and 'inpaint' in f.lower():
guess = 'Stable Diffusion XL Inpaint'
elif guess == 'Stable Diffusion XL' and 'instruct' in f.lower():
guess = 'Stable Diffusion XL Instruct'
# get actual pipeline
pipeline = shared_items.get_pipelines().get(guess, None)
shared.log.info(f'Autodetect: {op}="{guess}" class={pipeline.__name__} file="{f}" size={size}MB')
except Exception as e:
shared.log.error(f'Error detecting diffusers pipeline: model={f} {e}')
return None, None
else:
try:
size = round(os.path.getsize(f) / 1024 / 1024)
pipeline = shared_items.get_pipelines().get(guess, None)
shared.log.info(f'Diffusers: {op}="{guess}" class={pipeline.__name__} file="{f}" size={size}MB')
except Exception as e:
shared.log.error(f'Error loading diffusers pipeline: model={f} {e}')
if pipeline is None:
shared.log.warning(f'Autodetect: pipeline not recognized: {guess}: {op}={f} size={size}')
pipeline = diffusers.StableDiffusionPipeline
return pipeline, guess
def copy_diffuser_options(new_pipe, orig_pipe):
new_pipe.sd_checkpoint_info = orig_pipe.sd_checkpoint_info
new_pipe.sd_model_checkpoint = orig_pipe.sd_model_checkpoint
new_pipe.embedding_db = getattr(orig_pipe, 'embedding_db', None)
new_pipe.sd_model_hash = getattr(orig_pipe, 'sd_model_hash', None)
new_pipe.has_accelerate = getattr(orig_pipe, 'has_accelerate', False)
new_pipe.current_attn_name = getattr(orig_pipe, 'current_attn_name', None)
new_pipe.default_scheduler = getattr(orig_pipe, 'default_scheduler', None)
new_pipe.is_sdxl = getattr(orig_pipe, 'is_sdxl', False) # a1111 compatibility item
new_pipe.is_sd2 = getattr(orig_pipe, 'is_sd2', False)
new_pipe.is_sd1 = getattr(orig_pipe, 'is_sd1', True)
def set_diffuser_options(sd_model, vae = None, op: str = 'model'):
if sd_model is None:
shared.log.warning(f'{op} is not loaded')
return
if (shared.opts.diffusers_model_cpu_offload or shared.cmd_opts.medvram) and (shared.opts.diffusers_seq_cpu_offload or shared.cmd_opts.lowvram):
shared.log.warning(f'Setting {op}: Model CPU offload and Sequential CPU offload are not compatible')
shared.log.debug(f'Setting {op}: disabling model CPU offload')
shared.opts.diffusers_model_cpu_offload=False
shared.cmd_opts.medvram=False
if hasattr(sd_model, "watermark"):
sd_model.watermark = NoWatermark()
if not (hasattr(sd_model, "has_accelerate") and sd_model.has_accelerate):
sd_model.has_accelerate = False
if hasattr(sd_model, "vae"):
if vae is not None:
sd_model.vae = vae
shared.log.debug(f'Setting {op} VAE: name={sd_vae.loaded_vae_file}')
if shared.opts.diffusers_vae_upcast != 'default':
sd_model.vae.config.force_upcast = True if shared.opts.diffusers_vae_upcast == 'true' else False
if shared.opts.no_half_vae:
devices.dtype_vae = torch.float32
sd_model.vae.to(devices.dtype_vae)
shared.log.debug(f'Setting {op} VAE: upcast={sd_model.vae.config.force_upcast}')
if hasattr(sd_model, "enable_vae_slicing"):
if shared.opts.diffusers_vae_slicing:
shared.log.debug(f'Setting {op}: enable VAE slicing')
sd_model.enable_vae_slicing()
else:
sd_model.disable_vae_slicing()
if hasattr(sd_model, "enable_vae_tiling"):
if shared.opts.diffusers_vae_tiling:
shared.log.debug(f'Setting {op}: enable VAE tiling')
sd_model.enable_vae_tiling()
else:
sd_model.disable_vae_tiling()
if hasattr(sd_model, "vqvae"):
sd_model.vqvae.to(torch.float32) # vqvae is producing nans in fp16
set_diffusers_attention(sd_model)
if shared.opts.diffusers_fuse_projections and hasattr(sd_model, 'fuse_qkv_projections'):
try:
sd_model.fuse_qkv_projections()
shared.log.debug(f'Setting {op}: enable fused projections')
except Exception as e:
shared.log.error(f'Error enabling fused projections: {e}')
if shared.opts.diffusers_eval:
if hasattr(sd_model, "unet") and hasattr(sd_model.unet, "requires_grad_"):
sd_model.unet.requires_grad_(False)
sd_model.unet.eval()
if hasattr(sd_model, "vae") and hasattr(sd_model.vae, "requires_grad_"):
sd_model.vae.requires_grad_(False)
sd_model.vae.eval()
if hasattr(sd_model, "text_encoder") and hasattr(sd_model.text_encoder, "requires_grad_"):
sd_model.text_encoder.requires_grad_(False)
sd_model.text_encoder.eval()
if shared.opts.diffusers_quantization:
sd_model = sd_models_compile.dynamic_quantization(sd_model)
if shared.opts.opt_channelslast and hasattr(sd_model, 'unet'):
shared.log.debug(f'Setting {op}: enable channels last')
sd_model.unet.to(memory_format=torch.channels_last)
if hasattr(sd_model, "enable_model_cpu_offload"):
if shared.cmd_opts.medvram or shared.opts.diffusers_model_cpu_offload:
shared.log.debug(f'Setting {op}: enable model CPU offload')
if shared.opts.diffusers_move_base or shared.opts.diffusers_move_unet or shared.opts.diffusers_move_refiner:
shared.opts.diffusers_move_base = False
shared.opts.diffusers_move_unet = False
shared.opts.diffusers_move_refiner = False
shared.log.warning(f'Disabling {op} "Move model to CPU" since "Model CPU offload" is enabled')
if not hasattr(sd_model, "_all_hooks") or len(sd_model._all_hooks) == 0: # pylint: disable=protected-access
sd_model.enable_model_cpu_offload(device=devices.device)
else:
sd_model.maybe_free_model_hooks()
sd_model.has_accelerate = True
if hasattr(sd_model, "enable_sequential_cpu_offload"):
if shared.cmd_opts.lowvram or shared.opts.diffusers_seq_cpu_offload:
shared.log.debug(f'Setting {op}: enable sequential CPU offload')
if shared.opts.diffusers_move_base or shared.opts.diffusers_move_unet or shared.opts.diffusers_move_refiner:
shared.opts.diffusers_move_base = False
shared.opts.diffusers_move_unet = False
shared.opts.diffusers_move_refiner = False
shared.log.warning(f'Disabling {op} "Move model to CPU" since "Sequential CPU offload" is enabled')
if sd_model.has_accelerate:
if op == "vae": # reapply sequential offload to vae
from accelerate import cpu_offload
sd_model.vae.to("cpu")
cpu_offload(sd_model.vae, devices.device, offload_buffers=len(sd_model.vae._parameters) > 0) # pylint: disable=protected-access
else:
pass # do nothing if offload is already applied
else:
sd_model.enable_sequential_cpu_offload(device=devices.device)
sd_model.has_accelerate = True
def move_model(model, device=None, force=False):
if model is None or device is None:
return
if getattr(model, 'vae', None) is not None and get_diffusers_task(model) != DiffusersTaskType.TEXT_2_IMAGE:
if device == devices.device: # force vae back to gpu if not in txt2img mode
model.vae.to(device)
if hasattr(model.vae, '_hf_hook'):
debug_move(f'Model move: to={device} class={model.vae.__class__} fn={sys._getframe(1).f_code.co_name}') # pylint: disable=protected-access
model.vae._hf_hook.execution_device = device # pylint: disable=protected-access
debug_move(f'Model move: device={device} class={model.__class__} accelerate={getattr(model, "has_accelerate", False)} fn={sys._getframe(1).f_code.co_name}') # pylint: disable=protected-access
if hasattr(model, "components"): # accelerate patch
for name, m in model.components.items():
if not hasattr(m, "_hf_hook"): # not accelerate hook
break
if not isinstance(m, torch.nn.Module) or name in model._exclude_from_cpu_offload: # pylint: disable=protected-access
continue
for module in m.modules():
if (hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None): # pylint: disable=protected-access
try:
module._hf_hook.execution_device = device # pylint: disable=protected-access
except Exception as e:
if os.environ.get('SD_MOVE_DEBUG', None):
shared.log.error(f'Model move execution device: device={device} {e}')
if getattr(model, 'has_accelerate', False) and not force:
return
try:
try:
model.to(device)
except Exception as e0:
if 'Cannot copy out of meta tensor' in str(e0):
if hasattr(model, "components"):
for _name, component in model.components.items():
if hasattr(component, 'modules'):
for module in component.modules():
try:
module.to(device)
except Exception as e2:
if 'Cannot copy out of meta tensor' in str(e2):
if os.environ.get('SD_MOVE_DEBUG', None):
shared.log.warning(f'Model move meta: module={module.__class__}')
module.to_empty(device=device)
elif 'enable_sequential_cpu_offload' in str(e0):
pass # ignore model move if sequential offload is enabled
else:
raise e0
if hasattr(model, "prior_pipe"):
model.prior_pipe.to(device)
except Exception as e1:
shared.log.error(f'Model move: device={device} {e1}')
devices.torch_gc()
def get_load_config(model_file, model_type, config_type='yaml'):
if config_type == 'yaml':
yaml = os.path.splitext(model_file)[0] + '.yaml'
if os.path.exists(yaml):
return yaml
if model_type == 'Stable Diffusion':
return 'configs/v1-inference.yaml'
if model_type == 'Stable Diffusion XL':
return 'configs/sd_xl_base.yaml'
if model_type == 'Stable Diffusion XL Refiner':
return 'configs/sd_xl_refiner.yaml'
if model_type == 'Stable Diffusion 2':
return None # dont know if its eps or v so let diffusers sort it out
# return 'configs/v2-inference-512-base.yaml'
# return 'configs/v2-inference-768-v.yaml'
elif config_type == 'json':
if not shared.opts.diffuser_cache_config:
return None
if model_type == 'Stable Diffusion':
return 'configs/sd15'
if model_type == 'Stable Diffusion XL':
return 'configs/sdxl'
if model_type == 'Stable Diffusion 3':
return 'configs/sd3'
return None
def patch_diffuser_config(sd_model, model_file):
def load_config(fn, k):
model_file = os.path.splitext(fn)[0]
cfg_file = f'{model_file}_{k}.json'
try:
if os.path.exists(cfg_file):
with open(cfg_file, 'r', encoding='utf-8') as f:
return json.load(f)
cfg_file = f'{os.path.join(paths.sd_configs_path, os.path.basename(model_file))}_{k}.json'
if os.path.exists(cfg_file):
with open(cfg_file, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception:
pass
return {}
if sd_model is None:
return sd_model
if hasattr(sd_model, 'unet') and hasattr(sd_model.unet, 'config') and 'inpaint' in model_file.lower():
if debug_load:
shared.log.debug('Model config patch: type=inpaint')
sd_model.unet.config.in_channels = 9
if not hasattr(sd_model, '_internal_dict'):
return sd_model
for c in sd_model._internal_dict.keys(): # pylint: disable=protected-access
component = getattr(sd_model, c, None)
if hasattr(component, 'config'):
if debug_load:
shared.log.debug(f'Model config: component={c} config={component.config}')
override = load_config(model_file, c)
updated = {}
for k, v in override.items():
if k.startswith('_'):
continue
if v != component.config.get(k, None):
if hasattr(component.config, '__frozen'):
component.config.__frozen = False # pylint: disable=protected-access
component.config[k] = v
updated[k] = v
if updated and debug_load:
shared.log.debug(f'Model config: component={c} override={updated}')
return sd_model
def load_diffuser(checkpoint_info=None, already_loaded_state_dict=None, timer=None, op='model'): # pylint: disable=unused-argument
if shared.cmd_opts.profile:
import cProfile
pr = cProfile.Profile()
pr.enable()
if timer is None:
timer = Timer()
logging.getLogger("diffusers").setLevel(logging.ERROR)
timer.record("diffusers")
diffusers_load_config = {
"low_cpu_mem_usage": True,
"torch_dtype": devices.dtype,
"load_connected_pipeline": True,
# sd15 specific but we cant know ahead of time
"safety_checker": None,
"requires_safety_checker": False,
# "use_safetensors": True,
}
if shared.opts.diffusers_model_load_variant != 'default':
diffusers_load_config['variant'] = shared.opts.diffusers_model_load_variant
if shared.opts.diffusers_pipeline == 'Custom Diffusers Pipeline' and len(shared.opts.custom_diffusers_pipeline) > 0:
shared.log.debug(f'Diffusers custom pipeline: {shared.opts.custom_diffusers_pipeline}')
diffusers_load_config['custom_pipeline'] = shared.opts.custom_diffusers_pipeline
# if 'LCM' in checkpoint_info.path:
# diffusers_load_config['custom_pipeline'] = 'latent_consistency_txt2img'
if shared.opts.data.get('sd_model_checkpoint', '') == 'model.ckpt' or shared.opts.data.get('sd_model_checkpoint', '') == '':
shared.opts.data['sd_model_checkpoint'] = "runwayml/stable-diffusion-v1-5"
if op == 'model' or op == 'dict':
if (model_data.sd_model is not None) and (checkpoint_info is not None) and (checkpoint_info.hash == model_data.sd_model.sd_checkpoint_info.hash): # trying to load the same model
return
else:
if (model_data.sd_refiner is not None) and (checkpoint_info is not None) and (checkpoint_info.hash == model_data.sd_refiner.sd_checkpoint_info.hash): # trying to load the same model
return
sd_model = None
try:
if shared.cmd_opts.ckpt is not None and os.path.isdir(shared.cmd_opts.ckpt) and model_data.initial: # initial load
ckpt_basename = os.path.basename(shared.cmd_opts.ckpt)
model_name = modelloader.find_diffuser(ckpt_basename)
if model_name is not None:
shared.log.info(f'Load model {op}: {model_name}')
model_file = modelloader.download_diffusers_model(hub_id=model_name, variant=diffusers_load_config.get('variant', None))
try:
shared.log.debug(f'Model load {op} config: {diffusers_load_config}')
sd_model = diffusers.DiffusionPipeline.from_pretrained(model_file, **diffusers_load_config)
except Exception as e:
shared.log.error(f'Failed loading model: {model_file} {e}')
errors.display(e, f'Load model: {model_file}')
list_models() # rescan for downloaded model
checkpoint_info = CheckpointInfo(model_name)
checkpoint_info = checkpoint_info or select_checkpoint(op=op)
if checkpoint_info is None:
unload_model_weights(op=op)
return
vae = None
sd_vae.loaded_vae_file = None
if op == 'model' or op == 'refiner':
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
vae = sd_vae.load_vae_diffusers(checkpoint_info.path, vae_file, vae_source)
if vae is not None:
diffusers_load_config["vae"] = vae
shared.log.debug(f'Diffusers loading: path="{checkpoint_info.path}"')
pipeline, model_type = detect_pipeline(checkpoint_info.path, op)
if os.path.isdir(checkpoint_info.path) or checkpoint_info.type == 'huggingface':
files = shared.walk_files(checkpoint_info.path, ['.safetensors', '.bin', '.ckpt'])
if 'variant' not in diffusers_load_config and any('diffusion_pytorch_model.fp16' in f for f in files): # deal with diffusers lack of variant fallback when loading
diffusers_load_config['variant'] = 'fp16'
if model_type in ['Stable Cascade']: # forced pipeline
try:
from modules.model_stablecascade import load_cascade_combined
sd_model = load_cascade_combined(checkpoint_info, diffusers_load_config)
except Exception as e:
shared.log.error(f'Diffusers Failed loading {op}: {checkpoint_info.path} {e}')
if debug_load:
errors.display(e, 'Load')
return
elif model_type in ['InstaFlow']: # forced pipeline
try:
pipeline = diffusers.utils.get_class_from_dynamic_module('instaflow_one_step', module_file='pipeline.py')
sd_model = pipeline.from_pretrained(checkpoint_info.path, cache_dir=shared.opts.diffusers_dir, **diffusers_load_config)
except Exception as e:
shared.log.error(f'Diffusers Failed loading {op}: {checkpoint_info.path} {e}')
if debug_load:
errors.display(e, 'Load')
return
elif model_type in ['SegMoE']: # forced pipeline
try:
from modules.segmoe.segmoe_model import SegMoEPipeline
sd_model = SegMoEPipeline(checkpoint_info.path, cache_dir=shared.opts.diffusers_dir, **diffusers_load_config)
sd_model = sd_model.pipe # segmoe pipe does its stuff in __init__ and __call__ is the original pipeline
except Exception as e:
shared.log.error(f'Diffusers Failed loading {op}: {checkpoint_info.path} {e}')
if debug_load:
errors.display(e, 'Load')
return
elif model_type in ['PixArt-Sigma']: # forced pipeline
try:
# shared.opts.data['cuda_dtype'] = 'FP32' # override
shared.opts.data['diffusers_model_cpu_offload'] = True # override
devices.set_cuda_params()
sd_model = diffusers.PixArtSigmaPipeline.from_pretrained(