5
5
import torch
6
6
import torchvision .transforms .functional as TF
7
7
from PIL import Image
8
- from modules import shared , devices , processing , sd_models , errors , sd_hijack_hypertile , processing_vae , sd_models_compile , hidiffusion , timer , modelstats , extra_networks
8
+ from modules import shared , devices , processing , sd_models , errors , sd_hijack_hypertile , processing_vae , sd_models_compile , hidiffusion , timer , modelstats , extra_networks , ras
9
9
from modules .processing_helpers import resize_hires , calculate_base_steps , calculate_hires_steps , calculate_refiner_steps , save_intermediate , update_sampler , is_txt2img , is_refiner_enabled , get_job_name
10
10
from modules .processing_args import set_pipeline_args
11
11
from modules .onnx_impl import preprocess_pipeline as preprocess_onnx_pipeline , check_parameters_changed as olive_check_parameters_changed
@@ -93,6 +93,7 @@ def process_base(p: processing.StableDiffusionProcessing):
93
93
sd_models .move_model (shared .sd_model .transformer , devices .device )
94
94
extra_networks .activate (p , exclude = ['text_encoder' , 'text_encoder_2' , 'text_encoder_3' ])
95
95
hidiffusion .apply (p , shared .sd_model_type )
96
+ ras .apply (shared .sd_model , p )
96
97
timer .process .record ('move' )
97
98
if hasattr (shared .sd_model , 'tgate' ) and getattr (p , 'gate_step' , - 1 ) > 0 :
98
99
base_args ['gate_step' ] = p .gate_step
@@ -106,6 +107,7 @@ def process_base(p: processing.StableDiffusionProcessing):
106
107
if hasattr (output , 'images' ):
107
108
shared .history .add (output .images , info = processing .create_infotext (p ), ops = p .ops )
108
109
timer .process .record ('pipeline' )
110
+ ras .unapply (shared .sd_model )
109
111
hidiffusion .unapply ()
110
112
sd_models_compile .openvino_post_compile (op = "base" ) # only executes on compiled vino models
111
113
sd_models_compile .check_deepcache (enable = False )
0 commit comments