-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpool_xy_circle.py
90 lines (72 loc) · 2.8 KB
/
pool_xy_circle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
Instead of MPI parallelisation for each pixel, it is [citation needed] faster
to simply distribute pixels to different processes via pooling. The speedup is
not about the actual sampling, but the overheads are only executed once...
"""
from __future__ import division
# the os.niceness will be inherited by child processes
# behave, kids!
import os
os.nice(19)
import sys
import multiprocessing
from collections import OrderedDict
import numpy as np
from pyspecnest import pool_multinest
from opencube import make_cube_shh
from config import sampler_script_file
def try_get_args(n, fallback, forcetype=str):
try:
# sys.argv[0] is some env executable path...
arg = forcetype(sys.argv[n+1])
except IndexError:
arg = fallback
return arg
def get_circle_mask(d, shape=None, x0=None, y0=None):
if shape is None:
shape = (d, d) # will make a square
if y0 is None:
y0 = d / 2.
if x0 is None:
x0 = d / 2.
ymax, xmax = shape
rad_yy, rad_xx = np.meshgrid(np.arange(xmax) - x0 + .5,
np.arange(ymax) - y0 + .5)
dist = (rad_yy**2 + rad_xx**2)**0.5
dist[dist > (d / 2.)] = np.nan
return np.isfinite(dist)
def get_circle_idf(x0, y0, d):
""" Returns x- and y-indices of a circe in an array """
idx, idy = np.where(get_circle_mask(d))
return idx + x0 - d / 2., idy + y0 - d / 2.
def main():
# NOTE: normal dict would mess up the order of the arguments
default_args = OrderedDict([('npeaks', 2), ('method', "snr"), ('cut', 8),
('n_cpu', 15), ('x0', 113), ('y0', 140), ('r', 60)])
runtime_args = {}
for i, (argname, argval) in enumerate(default_args.items()):
runtime_args[argname] = try_get_args(i, argval, type(argval))
method = runtime_args.pop('method')
n_cpu = runtime_args.pop('n_cpu')
npeaks = runtime_args['npeaks']
cut = runtime_args['cut']
x0, y0 = runtime_args['x0'], runtime_args['y0']
r = runtime_args['r']
spc = make_cube_shh() # comes with pregen snr attributes...
mask = get_circle_mask(r*2, spc.snrmap.shape, x0, y0)
masked_snr = spc.snrmap.copy()
# I reap what I sow - a result of over-hacking things up
assert cut >= 1
masked_snr[~mask] = cut - 1
order = pool_multinest.get_xy_sorted(masked_snr, cut=cut)
tasklist_kwargs=dict(n_cpu=n_cpu, method='snr')
tasklist_kwargs.update(runtime_args)
tasks = pool_multinest.get_tasks(n_cpu, xy_order=order,
npeaks=npeaks, script=sampler_script_file)
pool = multiprocessing.Pool(processes=n_cpu)
# NOTE: map vs imap? imap has better ordering... see more here:
# [https://stackoverflow.com/questions/26520781]
# NOTE 2: imap won't work here...
pool.map(pool_multinest.work, tasks)
if __name__ == '__main__':
main()