forked from Sundrops/video-caption.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·148 lines (131 loc) · 5.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import os
import numpy as np
import misc.utils as utils
import opts
import torch
import torch.optim as optim
from dataloader import VideoDataset
from misc.rewards import get_self_critical_reward, init_cider_scorer
from models import DecoderRNN, EncoderRNN, S2VTAttModel, S2VTModel
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
def train(loader, model, crit, optimizer, lr_scheduler, opt, rl_crit=None):
model.train()
if torch.cuda.device_count() > 1:
print("{} devices detected, switch to parallel model.".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(opt["epochs"]):
lr_scheduler.step()
iteration = 0
# If start self crit training
if opt["self_crit_after"] != -1 and epoch >= opt["self_crit_after"]:
sc_flag = True
init_cider_scorer(opt["cached_tokens"])
else:
sc_flag = False
for data in loader:
torch.cuda.synchronize()
fc_feats = data['fc_feats'].to(device)
labels = data['labels'].to(device)
masks = data['masks'].to(device)
if not sc_flag:
seq_probs, _ = model(fc_feats, labels, 'train')
loss = crit(seq_probs, labels[:, 1:], masks[:, 1:])
else:
seq_probs, seq_preds = model(fc_feats, mode='inference', opt=opt)
reward = get_self_critical_reward(model, fc_feats, data, seq_preds)
print(reward.shape)
loss = rl_crit(seq_probs, seq_preds,
Variable(
torch.from_numpy(reward).float().cuda()))
optimizer.zero_grad()
loss.backward()
utils.clip_gradient(optimizer, opt["grad_clip"])
optimizer.step()
train_loss = loss.data[0]
torch.cuda.synchronize()
iteration += 1
if not sc_flag:
print("iter %d (epoch %d), train_loss = %.6f" %
(iteration, epoch, train_loss))
else:
print("iter %d (epoch %d), avg_reward = %.6f" %
(iteration, epoch, np.mean(reward[:, 0])))
if epoch != 0 and epoch % opt["save_checkpoint_every"] == 0:
model_path = os.path.join(opt["checkpoint_path"],
'model_%d.pth' % (epoch))
model_info_path = os.path.join(opt["checkpoint_path"],
'model_score.txt')
torch.save(model.state_dict(), model_path)
print("model saved to %s" % (model_path))
with open(model_info_path, 'a') as f:
f.write("model_%d, loss: %.6f\n" % (epoch, train_loss))
def main(opt):
dataset = VideoDataset(opt, 'train')
dataloader = DataLoader(dataset,
batch_size=opt["batch_size"],
num_workers=16,
shuffle=True)
opt["vocab_size"] = dataset.get_vocab_size()
if opt["model"] == 'S2VTModel':
model = S2VTModel(
opt["vocab_size"],
opt["max_len"],
opt["dim_hidden"],
opt["dim_word"],
opt['dim_vid'],
rnn_cell=opt['rnn_type'],
n_layers=opt['num_layers'],
bidirectional=opt["bidirectional"],
rnn_dropout_p=opt["rnn_dropout_p"]).cuda()
elif opt["model"] == "S2VTAttModel":
encoder = EncoderRNN(
opt["dim_vid"],
opt["dim_hidden"],
n_layers=opt['num_layers'],
bidirectional=opt["bidirectional"],
input_dropout_p=opt["input_dropout_p"],
rnn_cell=opt['rnn_type'],
rnn_dropout_p=opt["rnn_dropout_p"])
decoder = DecoderRNN(
opt["vocab_size"],
opt["max_len"],
opt["dim_hidden"],
opt["dim_word"],
n_layers=opt['num_layers'],
input_dropout_p=opt["input_dropout_p"],
rnn_cell=opt['rnn_type'],
rnn_dropout_p=opt["rnn_dropout_p"],
bidirectional=opt["bidirectional"])
model = S2VTAttModel(encoder, decoder).cuda()
crit = utils.LanguageModelCriterion()
rl_crit = utils.RewardCriterion()
optimizer = optim.Adam(
model.parameters(),
lr=opt["learning_rate"],
weight_decay=opt["weight_decay"])
exp_lr_scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=opt["learning_rate_decay_every"],
gamma=opt["learning_rate_decay_rate"])
train(dataloader, model, crit, optimizer, exp_lr_scheduler, opt, rl_crit)
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
for key, value in opt.items():
print(key, value)
os.environ['CUDA_VISIBLE_DEVICES'] = opt["gpu"]
opt_json = os.path.join(opt["checkpoint_path"], 'opt_info.json')
if not os.path.exists(opt["checkpoint_path"]):
os.makedirs(opt["checkpoint_path"])
with open(opt_json, 'w') as f:
json.dump(opt, f)
print('save opt details to %s' % (opt_json))
try:
main(opt)
except Exception as e:
raise e