-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_net.py
49 lines (34 loc) · 1.42 KB
/
neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
import numpy as np
import gym
num_inputs = 4
num_hidden = 4
# Prob to go left 1-left = right
num_outputs = 1
initializer = tf.contrib.layers.variance_scaling_initializer()
x = tf.placeholder(tf.float32, shape=[None, num_inputs])
hidden_layer_one = tf.layers.dense(x, num_hidden, activation=tf.nn.relu, kernel_initializer=initializer)
hidden_layer_two = tf.layers.dense(hidden_layer_one, num_hidden, activation=tf.nn.relu, kernel_initializer=initializer)
output_layer = tf.layers.dense(hidden_layer_two, num_outputs, activation=tf.nn.sigmoid, kernel_initializer=initializer)
probabilities = tf.concat(axis=1, values=[output_layer, 1-output_layer])
action = tf.multinomial(probabilities, num_samples=1)
init = tf.global_variables_initializer()
epi = 50
step_limit = 500
env = env = gym.make('CartPole-v0')
avg_steps = []
with tf.Session() as sess:
init.run()
for i_episode in range(epi):
obs = env.reset()
for step in range(step_limit):
env.render()
action_val = action.eval(feed_dict={x: obs.reshape(1, num_inputs)})
obs, reward, done, info = env.step(action_val[0][0])
# print(obs, reward, done, info)
if done:
avg_steps.append(step)
# print("Done after {} steps".format(step))
break
print("After {} episodes, average steps per game was {}".format(epi, np.mean(avg_steps)))
env.close()