-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficient.py
199 lines (167 loc) · 5.91 KB
/
efficient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
An implementation of EfficientNet CNN architecture.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2021-02-05 Initial coding
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
"""
import torch
import torch.nn as nn
from math import ceil
base_model = [
# expand_ratio, channels, repeats, stride, kernel_size
[1, 16, 1, 1, 3],
[6, 24, 2, 2, 3],
[6, 40, 2, 2, 5],
[6, 80, 3, 2, 3],
[6, 112, 3, 1, 5],
[6, 192, 4, 2, 5],
[6, 320, 1, 1, 3],
]
phi_values = {
# tuple of: (phi_value, resolution, drop_rate)
"b0": (0, 224, 0.2), # alpha, beta, gamma, depth = alpha ** phi
"b1": (0.5, 240, 0.2),
"b2": (1, 260, 0.3),
"b3": (2, 300, 0.3),
"b4": (3, 380, 0.4),
"b5": (4, 456, 0.4),
"b6": (5, 528, 0.5),
"b7": (6, 600, 0.5),
}
class CNNBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, stride, padding, groups=1
):
super(CNNBlock, self).__init__()
self.cnn = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
)
self.bn = nn.BatchNorm2d(out_channels)
self.silu = nn.SiLU() # SiLU <-> Swish
def forward(self, x):
return self.silu(self.bn(self.cnn(x)))
class SqueezeExcitation(nn.Module):
def __init__(self, in_channels, reduced_dim):
super(SqueezeExcitation, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1), # C x H x W -> C x 1 x 1
nn.Conv2d(in_channels, reduced_dim, 1),
nn.SiLU(),
nn.Conv2d(reduced_dim, in_channels, 1),
nn.Sigmoid(),
)
def forward(self, x):
return x * self.se(x)
class InvertedResidualBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
expand_ratio,
reduction=4, # squeeze excitation
survival_prob=0.8, # for stochastic depth
):
super(InvertedResidualBlock, self).__init__()
self.survival_prob = 0.8
self.use_residual = in_channels == out_channels and stride == 1
hidden_dim = in_channels * expand_ratio
self.expand = in_channels != hidden_dim
reduced_dim = int(in_channels / reduction)
if self.expand:
self.expand_conv = CNNBlock(
in_channels,
hidden_dim,
kernel_size=3,
stride=1,
padding=1,
)
self.conv = nn.Sequential(
CNNBlock(
hidden_dim,
hidden_dim,
kernel_size,
stride,
padding,
groups=hidden_dim,
),
SqueezeExcitation(hidden_dim, reduced_dim),
nn.Conv2d(hidden_dim, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
)
def stochastic_depth(self, x):
if not self.training:
return x
binary_tensor = (
torch.rand(x.shape[0], 1, 1, 1, device=x.device) < self.survival_prob
)
return torch.div(x, self.survival_prob) * binary_tensor
def forward(self, inputs):
x = self.expand_conv(inputs) if self.expand else inputs
if self.use_residual:
return self.stochastic_depth(self.conv(x)) + inputs
else:
return self.conv(x)
class EfficientNet(nn.Module):
def __init__(self, version, num_classes):
super(EfficientNet, self).__init__()
width_factor, depth_factor, dropout_rate = self.calculate_factors(version)
last_channels = ceil(1280 * width_factor)
self.pool = nn.AdaptiveAvgPool2d(1)
self.features = self.create_features(width_factor, depth_factor, last_channels)
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate),
nn.Linear(last_channels, num_classes),
)
def calculate_factors(self, version, alpha=1.2, beta=1.1):
phi, res, drop_rate = phi_values[version]
depth_factor = alpha**phi
width_factor = beta**phi
return width_factor, depth_factor, drop_rate
def create_features(self, width_factor, depth_factor, last_channels):
channels = int(32 * width_factor)
features = [CNNBlock(3, channels, 3, stride=2, padding=1)]
in_channels = channels
for expand_ratio, channels, repeats, stride, kernel_size in base_model:
out_channels = 4 * ceil(int(channels * width_factor) / 4)
layers_repeats = ceil(repeats * depth_factor)
for layer in range(layers_repeats):
features.append(
InvertedResidualBlock(
in_channels,
out_channels,
expand_ratio=expand_ratio,
stride=stride if layer == 0 else 1,
kernel_size=kernel_size,
padding=kernel_size // 2, # if k=1:pad=0, k=3:pad=1, k=5:pad=2
)
)
in_channels = out_channels
features.append(
CNNBlock(in_channels, last_channels, kernel_size=1, stride=1, padding=0)
)
return nn.Sequential(*features)
def forward(self, x):
x = self.pool(self.features(x))
return self.classifier(x.view(x.shape[0], -1))
def test():
device = "cuda" if torch.cuda.is_available() else "cpu"
version = "b0"
phi, res, drop_rate = phi_values[version]
num_examples, num_classes = 4, 10
x = torch.randn((num_examples, 3, res, res)).to(device)
model = EfficientNet(
version=version,
num_classes=num_classes,
).to(device)
print(model(x).shape) # (num_examples, num_classes)
if __name__ == "__main__":
test()