-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_model.py
81 lines (63 loc) · 2.62 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# coding: utf-8
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import tensorflow as tf
import setting
import load_data
import os
class cnn_model:
def __init__(self,setting):
self.setting = setting
def My_Accuracy(self, y_true, y_pred):
"""
输入:以 one-hot vector 格式的真实标签和预测标签
功能:评价模型性能
输出:预测的准确度
"""
res = tf.argmax(y_true,axis=1)
pre = tf.argmax(y_pred,axis=1)
acc = tf.cast(tf.equal(res, pre),tf.float32)
return tf.reduce_mean(acc)
def model(self):
"""
定义卷积神经网络模型
"""
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
opt = keras.optimizers.Adam(lr=self.setting.learning_rate, beta_1=self.setting.beta_1, beta_2=self.setting.beta_2, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=[self.My_Accuracy])
return model
def train(self):
"""
训练模型
"""
fashion_mnist_model = self.model()
# 加载已有模型
if os.path.exists(self.setting.save_model):
fashion_mnist_model.load_weights(self.setting.save_model)
train_x, train_y, _, _ = load_data.Load_And_Preprocess_Data(self.setting)
fashion_mnist_model.fit(train_x, train_y, batch_size=self.setting.batch_size, epochs=self.setting.epochs)
# 存储训练好的模型
fashion_mnist_model.save(self.setting.save_model)
def test(self):
"""
通过模型预测测试集标签,输出准确率
"""
_, _, test_x, test_y = load_data.Load_And_Preprocess_Data(setting)
fashion_mnist_model = self.model()
fashion_mnist_model.load_weights(self.setting.save_model)
_,acc = fashion_mnist_model.evaluate(test_x, test_y, batch_size=32)
print 'predict accuracy in test data is %.2f%%'%(acc*100)