-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrun_gan_rnn.sh
171 lines (151 loc) · 4.52 KB
/
run_gan_rnn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/bin/bash
# Copyright 2017 Ke Wang
set -euo pipefail
stage=2
nj=30
val_size=3000
train_dir=data/train/train_100h_new
test_dir=data/test/test001-3000-real
logdir=exp
tr_list=$train_dir/tr.list
cv_list=$train_dir/cv.list
test_list=$test_dir/test.list
# Data prepare
if [ $stage -le 0 ]; then
echo "Prepare tr and cv data"
# Prepare Numpy formatCMVN file
echo "Make Numpy format Global CMVN file ..."
python io_funcs/convert_cmvn_to_numpy.py \
--inputs=$train_dir/inputs.cmvn \
--labels=$train_dir/labels.cmvn \
--save_dir=$train_dir
echo "Make CMVN done."
# Split tr & cv sets
echo "Split tr and cv sets ..."
python scripts/get_train_val_scp.py \
--val_size=$val_size \
--data_dir=$train_dir
echo "Split done."
# Make TFRecords file
echo "Begin making TFRecords files ..."
if [ ! -d $logdir ]; then
mkdir -p $logdir || exit 1;
fi
if [ -f $logdir/.cv.error ]; then
rm -rf $logdir/.cv.error || exit 1;
elif [ -f $logdir/.tr.error ]; then
rm -rf $logdir/.tr.error || exit 1;
fi
# cv set
declare -i verbose=30
[ -d $train_dir/tfrecords ] && (rm -rf $train_dir/tfrecords || exit 1;)
mkdir -p $train_dir/tfrecords || exit 1;
TF_CPP_MIN_LOG_LEVEL=1 python io_funcs/make_tfrecords.py \
--verbose=$verbose \
--inputs=$train_dir/cv/inputs.scp \
--labels=$train_dir/cv/labels.scp \
--cmvn_dir=$train_dir \
--apply_cmvn=True \
--output_dir=$train_dir/tfrecords \
--name="cv" || touch $logdir/.cv.error &
echo "$train_dir/tfrecords/cv.tfrecords" > $cv_list
# tr set
bash scripts/split_scp.sh --nj $nj $train_dir/tr
[ -f $tr_list ] && (rm -rf $tr_list || exit 1);
for i in $(seq $nj); do
(
TF_CPP_MIN_LOG_LEVEL=1 python io_funcs/make_tfrecords.py \
--verbose=$verbose \
--inputs=$train_dir/tr/split${nj}/inputs${i}.scp \
--labels=$train_dir/tr/split${nj}/labels${i}.scp \
--cmvn_dir=$train_dir \
--apply_cmvn=True \
--output_dir=$train_dir/tfrecords \
--name="tr${i}"
echo "$train_dir/tfrecords/tr${i}.tfrecords" >> $tr_list
) || touch $logdir/.tr.error &
done
wait
if [ -f $logdir/.tr.error ] || [ -f $logdir/.cv.error ]; then
echo "$0: there was a problem while making TFRecords" && exit 1
fi
[ -f $train_dir/batch_num.txt ] && rm $train_dir/batch_num.txt
echo "Make train TFRecords files sucessed."
echo ""
fi
if [ $stage -le 1 ]; then
echo "Prepare test data"
if [ -f $logdir/.test.error ]; then
rm -rf $logdir/.test.error || exit 1;
fi
declare -i verbose=30
[ -d $test_dir/tfrecords ] && (rm -rf $test_dir/tfrecords || exit 1;)
mkdir -p $test_dir/tfrecords || exit 1;
TF_CPP_MIN_LOG_LEVEL=1 python io_funcs/make_tfrecords.py \
--test \
--verbose=$verbose \
--inputs=$test_dir/test.scp \
--cmvn_dir=$train_dir \
--apply_cmvn=True \
--output_dir=$test_dir/tfrecords \
--name="test" || touch $logdir/.test.error &
echo "$test_dir/tfrecords/test.tfrecords" > $test_list
wait
if [ -f $logdir/.test.error ]; then
echo "$0: there was a problem while making TFRecords" && exit 1
fi
echo "Make test TFRecords files sucessed."
echo ""
fi
# Train model
if [ $stage -le 2 ]; then
echo "$(date): $(hostname)"
CUDA_VISIBLE_DEVICES="0,1,2,3" TF_CPP_MIN_LOG_LEVEL=2 \
python scripts/train_gan_rnn.py \
--data_dir=$train_dir \
--tr_list_file=$tr_list \
--cv_list_file=$cv_list \
--g_type="res_lstm_l" \
--save_dir=exp/0206_gan_res_lstm_l_pre \
--batch_size=8 \
--g_learning_rate=0.00008 \
--d_learning_rate=0.0008 \
--disc_updates=1 \
--gen_updates=2 \
--batch_norm=False \
--l2_scale=1e-7 \
--init_mse_weight=10.0 \
--input_dim=257 \
--output_dim=40 \
--left_context=0 \
--right_context=0 \
--min_epoches=25 \
--max_epoches=30 \
--end_improve=0.001 \
--num_threads=32 \
--init_disc_noise_std=0.05 \
--num_gpu=4 || exit 1;
echo "Finished training successfully on $(date)"
echo ""
fi
# Decode
if [ $stage -le 3 ]; then
echo "Start decoding test data"
TF_CPP_MIN_LOG_LEVEL=2 python scripts/train_gan_rnn.py \
--decode \
--data_dir=$train_dir \
--test_list_file=$test_list \
--g_type="res_lstm_l" \
--save_dir=exp/0206_gan_res_lstm_l_pre \
--batch_norm=False \
--input_dim=257 \
--output_dim=40 \
--left_context=0 \
--right_context=0 \
--batch_size=1 \
--keep_prob=1.0 \
--l2_scale=0.0 \
--num_threads=30 || exit 1;
echo "Decoding done"
fi
exit 0