-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
272 lines (256 loc) · 11.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
from torchvision import datasets, transforms
import os
import numpy as np
from copy import deepcopy
import ipdb
from glow.datasets import preprocess as glow_preproc
import pickle as pkl
DOWNLOAD=True
def load_episode(dataset, tr, n_way, n_shot, n_query, device):
assert n_way > 0 and n_shot > 0 and n_query > 0
sample = {}
all_ys = list(set(dataset['y']))
np.random.shuffle(all_ys)
in_ys = all_ys[:n_way]
out_ys = all_ys[n_way:2*n_way]
xq, xs, ooc_xq = [], [], []
for y in in_ys:
x_y = dataset['x'][dataset['y'] == y]
np.random.shuffle(x_y)
xs.append(torch.stack([tr(x) for x in x_y[:n_shot]]))
xq.append(torch.stack([tr(x) for x in x_y[n_shot:n_shot+n_query]]))
for y in out_ys:
x_y = dataset['x'][dataset['y'] == y]
np.random.shuffle(x_y)
ooc_xq.append(torch.stack([tr(x) for x in x_y[:n_query]]))
xs = torch.stack(xs).to(device)
xq = torch.stack(xq).to(device)
ooc_xq = torch.stack(ooc_xq).to(device)
assert xq.shape == ooc_xq.shape
return {
'xs': xs,
'xq': xq,
'ooc_xq': ooc_xq,
}
def shuffle_data_order(data):
inds = np.random.permutation(len(data['x']))
data['x'] = data['x'][inds]
data['y'] = data['y'][inds]
return data
def _load_cached_miniimagenet(cache_path):
try:
with open(cache_path, "rb") as f2:
images = pkl.load(f2, encoding='bytes')
img_data_ = images[b'image_data']
class_dict = images[b'class_dict']
except:
with open(cache_path, "rb") as f2:
images = pkl.load(f2)
img_data_ = images['image_data']
class_dict = images['class_dict']
return img_data_, class_dict
def get_dataset(dataset, dataroot=os.path.join(os.environ['ROOT1'],'data')):
keys = ['x', 'y', 'n_channels', 'n_classes', 'im_size']
ret_dict = {}
if dataset == 'mnist-train':
mnist = datasets.MNIST(dataroot, train=True,download=DOWNLOAD, transform=None)
ret_dict['x'] = mnist.data
ret_dict['y'] = mnist.targets
ret_dict['n_channels'] = 1
ret_dict['n_classes'] = 10
ret_dict['im_size'] = 28
elif dataset == 'mnist-test':
mnist = datasets.MNIST(dataroot, train=False, download=DOWNLOAD, transform=None)
ret_dict['x'] = mnist.data
ret_dict['y'] = mnist.targets
ret_dict['n_channels'] = 1
ret_dict['n_classes'] = 10
ret_dict['im_size'] = 28
elif dataset == 'cifar10-train':
cifar = datasets.CIFAR10(dataroot, train=True, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data
ret_dict['y'] = cifar.targets
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 10
ret_dict['im_size'] = 32
elif dataset == 'cifar10-test':
cifar = datasets.CIFAR10(dataroot, train=False, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data
ret_dict['y'] = cifar.targets
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 10
ret_dict['im_size'] = 32
elif dataset == 'cifar100-train':
cifar = datasets.CIFAR100(dataroot, train=True, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data
ret_dict['y'] = cifar.targets
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 100
ret_dict['im_size'] = 32
elif dataset == 'cifar100-test':
cifar = datasets.CIFAR100(dataroot, train=False, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data
ret_dict['y'] = cifar.targets
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 100
ret_dict['im_size'] = 32
elif dataset == 'cifar-fs-train-train':
cifar = datasets.CIFAR100(dataroot, train=True, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data[np.array(cifar.targets)<64]
ret_dict['y'] = np.asarray(cifar.targets)[np.array(cifar.targets)<64]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 64
ret_dict['im_size'] = 32
elif dataset == 'cifar-fs-train-test':
cifar = datasets.CIFAR100(dataroot, train=False, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data[np.array(cifar.targets)<64]
ret_dict['y'] = np.asarray(cifar.targets)[np.array(cifar.targets)<64]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 64
ret_dict['im_size'] = 32
elif dataset == 'cifar-fs-test':
cifar = datasets.CIFAR100(dataroot, train=False, download=DOWNLOAD, transform=None)
ret_dict['x'] = cifar.data[np.array(cifar.targets)>=80]
ret_dict['y'] = np.asarray(cifar.targets)[np.array(cifar.targets)>=80]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 20
ret_dict['im_size'] = 32
elif dataset == 'cifar-fs-val':
cifar = datasets.CIFAR100(dataroot, train=True, download=DOWNLOAD, transform=None)
m = np.array(np.array(cifar.targets)<80).astype('int32') * np.array(np.array(cifar.targets)>=64).astype('int32')
ret_dict['x'] = cifar.data[m.astype('bool')]
ret_dict['y'] = np.asarray(cifar.targets)[m.astype('bool')]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 16
ret_dict['im_size'] = 32
elif dataset == 'miniimagenet-train-train':
split = 'train'
img_data_, class_dict = _load_cached_miniimagenet(
os.path.join(dataroot, 'mini-imagenet', "mini-imagenet-cache-{:s}.pkl".format(split)))
y = np.zeros((len(img_data_)), dtype='int32')
for n, inds in enumerate(class_dict.values()):
y[np.array(inds)] = n
N = int(len(img_data_)*.9)
# shuffle, so split contains every class
np.random.seed(0)
inds = np.random.permutation(len(img_data_))[:N]
ret_dict['x'] = img_data_[inds]
ret_dict['y'] = y[inds]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 64
ret_dict['im_size'] = 84
elif dataset == 'miniimagenet-train-test':
split = 'train'
img_data_, class_dict = _load_cached_miniimagenet(
os.path.join(dataroot, 'mini-imagenet', "mini-imagenet-cache-{:s}.pkl".format(split)))
y = np.zeros((len(img_data_)), dtype='int32')
for n, inds in enumerate(class_dict.values()):
y[np.array(inds)] = n
N = int(len(img_data_)*.9)
# shuffle, so split contains every class
np.random.seed(0)
inds = np.random.permutation(len(img_data_))[N:]
ret_dict['x'] = img_data_[inds]
ret_dict['y'] = y[inds]
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 64
ret_dict['im_size'] = 84
print(np.histogram(ret_dict['y'], bins=ret_dict['n_classes'], range=(0,ret_dict['n_classes'])))
elif dataset == 'miniimagenet-val':
split = 'val'
img_data_, class_dict = _load_cached_miniimagenet(
os.path.join(dataroot, 'mini-imagenet', "mini-imagenet-cache-{:s}.pkl".format(split)))
y = np.zeros((len(img_data_)), dtype='int32')
for n, inds in enumerate(class_dict.values()):
y[np.array(inds)] = n
ret_dict['x'] = img_data_
ret_dict['y'] = y
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 16
ret_dict['im_size'] = 84
elif dataset == 'miniimagenet-test':
split = 'test'
img_data_, class_dict = _load_cached_miniimagenet(
os.path.join(dataroot, 'mini-imagenet', "mini-imagenet-cache-{:s}.pkl".format(split)))
y = np.zeros((len(img_data_)), dtype='int32')
for n, inds in enumerate(class_dict.values()):
y[np.array(inds)] = n
ret_dict['x'] = img_data_
ret_dict['y'] = y
ret_dict['n_channels'] = 3
ret_dict['n_classes'] = 20
ret_dict['im_size'] = 84
else:
raise ValueError("unknown dataset")
assert set(keys) == set(ret_dict.keys())
assert isinstance(ret_dict['x'], np.ndarray) and len(ret_dict['x'].shape) == 4
assert isinstance(ret_dict['y'], np.ndarray) and len(ret_dict['y'].shape) == 1
return ret_dict
def assert_ndarray(x):
assert isinstance(x, np.ndarray)
return x
def one_to_three_channels(x):
if x.shape[0] == 1:
x = x.repeat(3,1,1)
return x
# Magic
mnist_normalize = transforms.Normalize((0.1307,), (0.3081,))
cifar_normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
def get_transform(transform_name):
#
if transform_name == 'mnist_normalize':
tr = transforms.Compose([assert_ndarray])
tr.transforms.append(transforms.ToPILImage())
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(mnist_normalize)
elif transform_name == 'mnist_resize_normalize':
tr = transforms.Compose([assert_ndarray])
tr.transforms.append(transforms.ToPILImage())
tr.transforms.append(transforms.Resize((28,28)))
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(lambda x: x.mean(0, keepdim=True))
tr.transforms.append(mnist_normalize)
elif transform_name == 'cifar_normalize':
tr = transforms.Compose([assert_ndarray, transforms.ToTensor()])
tr.transforms.append(cifar_normalize)
elif transform_name == 'cifar_augment_normalize':
tr = transforms.Compose([assert_ndarray, transforms.ToTensor()])
tr.transforms.append(transforms.ToPILImage())
tr.transforms.append(transforms.RandomCrop(32, padding=4))
tr.transforms.append(transforms.RandomHorizontalFlip())
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(cifar_normalize)
elif transform_name == 'cifar_resize_normalize':
tr = transforms.Compose([assert_ndarray])
tr.transforms.append(transforms.ToPILImage()) # if input to this is tensor, it runs, but behaves differently from input being np
tr.transforms.append(transforms.Resize((32,32)))
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(one_to_three_channels)
tr.transforms.append(cifar_normalize)
elif transform_name == 'cifar_augment_normalize_84':
tr = transforms.Compose([assert_ndarray, transforms.ToTensor()])
tr.transforms.append(transforms.ToPILImage())
tr.transforms.append(transforms.RandomCrop(84, padding=4))
tr.transforms.append(transforms.RandomHorizontalFlip())
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(cifar_normalize)
elif transform_name == 'cifar_resize_normalize_84':
tr = transforms.Compose([assert_ndarray])
tr.transforms.append(transforms.ToPILImage()) # if input to this is tensor, it runs, but behaves differently from input being np
tr.transforms.append(transforms.Resize((84,84)))
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(one_to_three_channels)
tr.transforms.append(cifar_normalize)
elif transform_name == 'cifar_resize_glow_preproc':
tr = transforms.Compose([assert_ndarray])
tr.transforms.append(transforms.ToPILImage())
tr.transforms.append(transforms.Resize((32,32)))
tr.transforms.append(transforms.ToTensor())
tr.transforms.append(one_to_three_channels)
tr.transforms.append(glow_preproc)
else:
raise ValueError()
return tr