-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmodel.py
299 lines (256 loc) · 12.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
'''
@author Ping Wang and Tian Shi
Please contact ping@vt.edu or tshi@vt.edu
'''
import os
import time
import torch
from torch.autograd import Variable
from seq2sql.model_seq2seq_base import modelSeq2SeqBase
from LeafNATS.data.seq2sql.process_batch_cqa_v1 import process_batch
from LeafNATS.modules.embedding.nats_embedding import natsEmbedding
from LeafNATS.modules.encoder.encoder_rnn import EncoderRNN
from LeafNATS.modules.encoder2decoder.nats_encoder2decoder import natsEncoder2Decoder
from LeafNATS.modules.attention.nats_attention_encoder import AttentionEncoder
from LeafNATS.modules.attention.nats_attention_decoder import AttentionDecoder
# from LeafNATS.utils.utils import *
class modelABS(modelSeq2SeqBase):
def __init__(self, args):
super().__init__(args=args)
def build_scheduler(self, optimizer):
'''
Schedule Learning Rate
'''
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer=optimizer, step_size=self.args.step_size,
gamma=self.args.step_decay)
return scheduler
def build_batch(self, batch_id):
'''
get batch data
'''
output = process_batch(
batch_id=batch_id,
path_=os.path.join('..', 'nats_results'),
fkey_=self.args.task,
batch_size=self.args.batch_size,
vocab2id=self.batch_data['vocab2id'],
max_lens=[self.args.src_seq_len, self.args.trg_seq_len])
self.batch_data['ext_id2oov'] = output['ext_id2oov']
self.batch_data['src_var'] = output['src_var'].to(self.args.device)
self.batch_data['batch_size'] = self.batch_data['src_var'].size(0)
self.batch_data['src_seq_len'] = self.batch_data['src_var'].size(1)
self.batch_data['src_mask_pad'] = output['src_mask_pad'].to(self.args.device)
if self.args.task == 'train' or self.args.task == 'validate':
self.batch_data['trg_input'] = output['trg_input_var'].to(self.args.device)
# different from seq2seq models.
self.batch_data['trg_output'] = output['trg_output_var'].to(self.args.device)
self.batch_data['trg_seq_len'] = self.batch_data['trg_input'].size(1)
else:
self.batch_data['src_mask_unk'] = output['src_mask_unk'].to(self.args.device)
self.batch_data['src_txt'] = output['src_txt']
self.batch_data['trg_txt'] = output['trg_txt']
self.batch_data['trg_seq_len'] = 1
def build_models(self):
'''
build all models.
in this model source and target share embeddings
'''
self.train_models['embedding'] = natsEmbedding(
vocab_size = self.batch_data['vocab_size'],
emb_dim = self.args.emb_dim,
share_emb_weight = True
).to(self.args.device)
self.train_models['encoder'] = EncoderRNN(
self.args.emb_dim, self.args.src_hidden_dim,
self.args.nLayers, 'lstm',
device = self.args.device
).to(self.args.device)
self.train_models['encoder2decoder'] = natsEncoder2Decoder(
src_hidden_size = self.args.src_hidden_dim,
trg_hidden_size = self.args.trg_hidden_dim,
rnn_network = 'lstm',
device = self.args.device
).to(self.args.device)
self.train_models['decoderRNN'] = torch.nn.LSTMCell(
self.args.emb_dim+self.args.trg_hidden_dim,
self.args.trg_hidden_dim
).to(self.args.device)
self.train_models['attnEncoder'] = AttentionEncoder(
self.args.src_hidden_dim,
self.args.trg_hidden_dim,
attn_method='luong_general',
repetition='temporal'
).to(self.args.device)
self.train_models['attnDecoder'] = AttentionDecoder(
self.args.trg_hidden_dim,
attn_method='luong_general'
).to(self.args.device)
self.train_models['wrapDecoder'] = torch.nn.Linear(
self.args.src_hidden_dim*2+self.args.trg_hidden_dim*2,
self.args.trg_hidden_dim, bias=True
).to(self.args.device)
self.train_models['genPrb'] = torch.nn.Linear(
self.args.emb_dim+self.args.src_hidden_dim*2+self.args.trg_hidden_dim, 1
).to(self.args.device)
# decoder to vocab
self.train_models['decoder2proj'] = torch.nn.Linear(
self.args.trg_hidden_dim, self.args.emb_dim, bias=False
).to(self.args.device)
def build_encoder(self):
'''
Encoder Pipeline
self.pipe_data = {
'encoder': {},
'decoderA': {}}
'decoderB': {'accu_attn': [], 'last_word': word}}
'''
src_emb = self.train_models['embedding'].get_embedding(
self.batch_data['src_var'])
src_enc, hidden_encoder = self.train_models['encoder'](src_emb)
trg_hidden0 = self.train_models['encoder2decoder'](hidden_encoder)
# set up pipe_data pass to decoder
self.pipe_data['encoder'] = {}
self.pipe_data['encoder']['src_emb'] = src_emb
self.pipe_data['encoder']['src_enc'] = src_enc
self.pipe_data['decoderB'] = {}
self.pipe_data['decoderB']['hidden'] = trg_hidden0
self.pipe_data['decoderB']['h_attn'] = Variable(torch.zeros(
self.batch_data['batch_size'], self.args.trg_hidden_dim
)).to(self.args.device)
self.pipe_data['decoderB']['past_attn'] = Variable(torch.ones(
self.batch_data['batch_size'], self.batch_data['src_seq_len']
)/float(self.batch_data['src_seq_len'])).to(self.args.device)
self.pipe_data['decoderB']['past_dech'] = Variable(torch.zeros(
1, 1)).to(self.args.device)
self.pipe_data['decoderB']['accu_attn'] = []
self.pipe_data['decoderFF'] = {}
self.pipe_data['decoderFF']['h_attn'] = []
self.pipe_data['decoderFF']['attn'] = []
self.pipe_data['decoderFF']['genPrb'] = []
# when training get target embedding at the same time.
if self.args.task == 'train' or self.args.task == 'validate':
trg_emb = self.train_models['embedding'].get_embedding(
self.batch_data['trg_input'])
self.pipe_data['decoderFF']['trg_seq_emb'] = trg_emb
def build_decoder_one_step(self, k=0):
'''
Decoder one-step
'''
# embedding at current decoding step
if self.args.task == 'train' or self.args.task == 'validate':
self.pipe_data['decoderA'] = self.pipe_data['decoderB']
word_emb = self.pipe_data['decoderFF']['trg_seq_emb'][:, k]
else:
word_emb = self.train_models['embedding'].get_embedding(
self.pipe_data['decoderA']['last_word'])
h_attn = self.pipe_data['decoderA']['h_attn']
dec_input = torch.cat((word_emb, h_attn), 1)
hidden = self.pipe_data['decoderA']['hidden']
past_attn = self.pipe_data['decoderA']['past_attn']
accu_attn = self.pipe_data['decoderA']['accu_attn']
past_dech = self.pipe_data['decoderA']['past_dech']
hidden = self.train_models['decoderRNN'](dec_input, hidden)
ctx_enc, attn, attn_ee = self.train_models['attnEncoder'](
hidden[0], self.pipe_data['encoder']['src_enc'],
past_attn, self.batch_data['src_mask_pad'])
# temporal attention
past_attn = past_attn + attn_ee
# decoder attention
if k == 0:
ctx_dec = Variable(torch.zeros(
self.batch_data['batch_size'], self.args.trg_hidden_dim
)).to(self.args.device)
else:
ctx_dec, _ = self.train_models['attnDecoder'](
hidden[0], past_dech)
past_dech = past_dech.transpose(0, 1) # seqL*batch*hidden
dec_idx = past_dech.size(0)
if k == 0:
past_dech = hidden[0].unsqueeze(0) # seqL*batch*hidden
past_dech = past_dech.transpose(0, 1) # batch*seqL*hidden
else:
past_dech = past_dech.contiguous().view(
-1, self.args.trg_hidden_dim) # seqL*batch**hidden
past_dech = torch.cat((past_dech, hidden[0]), 0) # (seqL+1)*batch**hidden
past_dech = past_dech.view(
dec_idx+1, self.batch_data['batch_size'], self.args.trg_hidden_dim
) # (seqL+1)*batch*hidden
past_dech = past_dech.transpose(0, 1) # batch*(seqL+1)*hidden
# wrap up.
h_attn = self.train_models['wrapDecoder'](torch.cat((ctx_enc, ctx_dec, hidden[0]), 1))
# pointer generator
pt_input = torch.cat((word_emb, hidden[0], ctx_enc), 1)
genPrb = torch.sigmoid(self.train_models['genPrb'](pt_input))
# setup piped_data
self.pipe_data['decoderB'] = {}
self.pipe_data['decoderB']['h_attn'] = h_attn
self.pipe_data['decoderB']['past_attn'] = past_attn
self.pipe_data['decoderB']['hidden'] = hidden
self.pipe_data['decoderB']['past_dech'] = past_dech
self.pipe_data['decoderB']['accu_attn'] = [a for a in accu_attn]
self.pipe_data['decoderB']['accu_attn'].append(attn)
if self.args.task == 'train' or self.args.task == 'validate':
self.pipe_data['decoderFF']['h_attn'].append(h_attn)
self.pipe_data['decoderFF']['attn'].append(attn)
self.pipe_data['decoderFF']['genPrb'].append(genPrb)
if k == self.batch_data['trg_seq_len']-1:
self.pipe_data['decoderFF']['h_attn'] = \
torch.cat(self.pipe_data['decoderFF']['h_attn'], 0).view(
self.batch_data['trg_seq_len'],
self.batch_data['batch_size'],
self.args.trg_hidden_dim).transpose(0,1)
self.pipe_data['decoderFF']['attn'] = \
torch.cat(self.pipe_data['decoderFF']['attn'], 0).view(
self.batch_data['trg_seq_len'],
self.batch_data['batch_size'],
self.args.src_seq_len).transpose(0,1)
self.pipe_data['decoderFF']['genPrb'] = \
torch.cat(self.pipe_data['decoderFF']['genPrb'], 0).view(
self.batch_data['trg_seq_len'],
self.batch_data['batch_size']).transpose(0,1)
else:
self.pipe_data['decoderFF']['h_attn'] = h_attn
self.pipe_data['decoderFF']['attn'] = attn.unsqueeze(0)
self.pipe_data['decoderFF']['genPrb'] = genPrb
def build_vocab_distribution(self):
'''
Data flow from input to output.
'''
trg_out = self.pipe_data['decoderFF']['h_attn']
trg_out = self.train_models['decoder2proj'](trg_out)
trg_out = self.train_models['embedding'].get_decode2vocab(trg_out)
trg_out = trg_out.view(
self.batch_data['batch_size'], self.batch_data['trg_seq_len'], -1)
prb = torch.softmax(trg_out, dim=2)
vocab_size = self.batch_data['vocab_size']
batch_size = self.batch_data['batch_size']
# trg_seq_len = self.batch_data['trg_seq_len']
src_seq_len = self.batch_data['src_seq_len']
# pointer-generator calculate index matrix
pt_idx = Variable(torch.FloatTensor(torch.zeros(1, 1, 1))).to(self.args.device)
pt_idx = pt_idx.repeat(batch_size, src_seq_len, vocab_size)
pt_idx.scatter_(2, self.batch_data['src_var'].unsqueeze(2), 1.0)
p_gen = self.pipe_data['decoderFF']['genPrb']
attn_ = self.pipe_data['decoderFF']['attn']
prb_output = p_gen.unsqueeze(2)*prb + \
(1.0-p_gen.unsqueeze(2))*torch.bmm(attn_, pt_idx)
return prb_output + 1e-20
def build_pipelines(self):
'''
Build pipeline from input to output.
Output is loss.
Input is word one-hot encoding.
'''
self.build_encoder()
for k in range(self.args.trg_seq_len):
self.build_decoder_one_step(k)
prb = self.build_vocab_distribution()
pad_mask = torch.ones(self.batch_data['vocab_size']).to(self.args.device)
pad_mask[self.batch_data['vocab2id']['<pad>']] = 0
self.loss_criterion = torch.nn.NLLLoss(pad_mask).to(self.args.device)
prb = torch.log(prb)
loss = self.loss_criterion(
prb.reshape(-1, self.batch_data['vocab_size']),
self.batch_data['trg_output'].view(-1))
return loss