-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathjoint_train.py
394 lines (335 loc) · 16.9 KB
/
joint_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import argparse
import logging
import math
import dill
import os
import options
import random
import numpy as np
from collections import OrderedDict
import torch
from torch import cuda
from torch.autograd import Variable
import data
import utils
from meters import AverageMeter
from discriminator import Discriminator
from generator import LSTMModel
from train_generator import train_g
from train_discriminator import train_d
from PGLoss import PGLoss
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG)
parser = argparse.ArgumentParser(description="Driver program for JHU Adversarial-NMT.")
# Load args
options.add_general_args(parser)
options.add_dataset_args(parser)
options.add_distributed_training_args(parser)
options.add_optimization_args(parser)
options.add_checkpoint_args(parser)
options.add_generator_model_args(parser)
options.add_discriminator_model_args(parser)
options.add_generation_args(parser)
def main(args):
use_cuda = (len(args.gpuid) >= 1)
print("{0} GPU(s) are available".format(cuda.device_count()))
# Load dataset
splits = ['train', 'valid']
if data.has_binary_files(args.data, splits):
dataset = data.load_dataset(
args.data, splits, args.src_lang, args.trg_lang, args.fixed_max_len)
else:
dataset = data.load_raw_text_dataset(
args.data, splits, args.src_lang, args.trg_lang, args.fixed_max_len)
if args.src_lang is None or args.trg_lang is None:
# record inferred languages in args, so that it's saved in checkpoints
args.src_lang, args.trg_lang = dataset.src, dataset.dst
print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
for split in splits:
print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))
g_logging_meters = OrderedDict()
g_logging_meters['train_loss'] = AverageMeter()
g_logging_meters['valid_loss'] = AverageMeter()
g_logging_meters['train_acc'] = AverageMeter()
g_logging_meters['valid_acc'] = AverageMeter()
g_logging_meters['bsz'] = AverageMeter() # sentences per batch
d_logging_meters = OrderedDict()
d_logging_meters['train_loss'] = AverageMeter()
d_logging_meters['valid_loss'] = AverageMeter()
d_logging_meters['train_acc'] = AverageMeter()
d_logging_meters['valid_acc'] = AverageMeter()
d_logging_meters['bsz'] = AverageMeter() # sentences per batch
# Set model parameters
args.encoder_embed_dim = 1000
args.encoder_layers = 4
args.encoder_dropout_out = 0
args.decoder_embed_dim = 1000
args.decoder_layers = 4
args.decoder_out_embed_dim = 1000
args.decoder_dropout_out = 0
args.bidirectional = False
# try to load generator model
g_model_path = 'checkpoints/generator/best_gmodel.pt'
if not os.path.exists(g_model_path):
print("Start training generator!")
train_g(args, dataset)
assert os.path.exists(g_model_path)
generator = LSTMModel(args, dataset.src_dict, dataset.dst_dict, use_cuda=use_cuda)
model_dict = generator.state_dict()
pretrained_dict = torch.load(g_model_path)
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
generator.load_state_dict(model_dict)
print("Generator has successfully loaded!")
# try to load discriminator model
d_model_path = 'checkpoints/discriminator/best_dmodel.pt'
if not os.path.exists(d_model_path):
print("Start training discriminator!")
train_d(args, dataset)
assert os.path.exists(d_model_path)
discriminator = Discriminator(args, dataset.src_dict, dataset.dst_dict, use_cuda=use_cuda)
model_dict = discriminator.state_dict()
pretrained_dict = torch.load(d_model_path)
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
generator.load_state_dict(model_dict)
print("Discriminator has successfully loaded!")
return
if use_cuda:
if torch.cuda.device_count() > 1:
discriminator = torch.nn.DataParallel(discriminator).cuda()
generator = torch.nn.DataParallel(generator).cuda()
else:
generator.cuda()
discriminator.cuda()
else:
discriminator.cpu()
generator.cpu()
# adversarial training checkpoints saving path
if not os.path.exists('checkpoints/joint'):
os.makedirs('checkpoints/joint')
checkpoints_path = 'checkpoints/joint/'
# define loss function
g_criterion = torch.nn.NLLLoss(size_average=False, ignore_index=dataset.dst_dict.pad(),reduce=True)
d_criterion = torch.nn.BCELoss()
pg_criterion = PGLoss(ignore_index=dataset.dst_dict.pad(), size_average=True,reduce=True)
# fix discriminator word embedding (as Wu et al. do)
for p in discriminator.embed_src_tokens.parameters():
p.requires_grad = False
for p in discriminator.embed_trg_tokens.parameters():
p.requires_grad = False
# define optimizer
g_optimizer = eval("torch.optim." + args.g_optimizer)(filter(lambda x: x.requires_grad,
generator.parameters()),
args.g_learning_rate)
d_optimizer = eval("torch.optim." + args.d_optimizer)(filter(lambda x: x.requires_grad,
discriminator.parameters()),
args.d_learning_rate,
momentum=args.momentum,
nesterov=True)
# start joint training
best_dev_loss = math.inf
num_update = 0
# main training loop
for epoch_i in range(1, args.epochs + 1):
logging.info("At {0}-th epoch.".format(epoch_i))
# seed = args.seed + epoch_i
# torch.manual_seed(seed)
max_positions_train = (args.fixed_max_len, args.fixed_max_len)
# Initialize dataloader, starting at batch_offset
itr = dataset.train_dataloader(
'train',
max_tokens=args.max_tokens,
max_sentences=args.joint_batch_size,
max_positions=max_positions_train,
# seed=seed,
epoch=epoch_i,
sample_without_replacement=args.sample_without_replacement,
sort_by_source_size=(epoch_i <= args.curriculum),
shard_id=args.distributed_rank,
num_shards=args.distributed_world_size,
)
# reset meters
for key, val in g_logging_meters.items():
if val is not None:
val.reset()
for key, val in d_logging_meters.items():
if val is not None:
val.reset()
# set training mode
generator.train()
discriminator.train()
update_learning_rate(num_update, 8e4, args.g_learning_rate, args.lr_shrink, g_optimizer)
for i, sample in enumerate(itr):
if use_cuda:
# wrap input tensors in cuda tensors
sample = utils.make_variable(sample, cuda=cuda)
## part I: use gradient policy method to train the generator
# use policy gradient training when rand > 50%
rand = random.random()
if rand >= 0.5:
# policy gradient training
generator.decoder.is_testing = True
sys_out_batch, prediction = generator(sample)
generator.decoder.is_testing = False
with torch.no_grad():
reward = discriminator(sample['net_input']['src_tokens'], prediction, dataset.dst_dict.pad())
train_trg_batch = sample['target']
pg_loss = pg_criterion(sys_out_batch, train_trg_batch, reward, use_cuda)
# logging.debug("G policy gradient loss at batch {0}: {1:.3f}, lr={2}".format(i, pg_loss.item(), g_optimizer.param_groups[0]['lr']))
g_optimizer.zero_grad()
pg_loss.backward()
torch.nn.utils.clip_grad_norm(generator.parameters(), args.clip_norm)
g_optimizer.step()
# oracle valid
sys_out_batch, _ = generator(sample)
train_trg_batch = sample['target'].view(-1)
sys_out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))
loss = g_criterion(sys_out_batch, train_trg_batch)
sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']
logging_loss = loss.data / sample_size / math.log(2)
g_logging_meters['train_loss'].update(logging_loss, sample_size)
logging.debug("G MLE loss at batch {0}: {1:.3f}, lr={2}".format(i, g_logging_meters['train_loss'].avg,
g_optimizer.param_groups[0]['lr']))
else:
# MLE training
sys_out_batch, _ = generator(sample)
train_trg_batch = sample['target'].view(-1)
sys_out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))
loss = g_criterion(sys_out_batch, train_trg_batch)
sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']
nsentences = sample['target'].size(0)
logging_loss = loss.data / sample_size / math.log(2)
g_logging_meters['bsz'].update(nsentences)
g_logging_meters['train_loss'].update(logging_loss, sample_size)
logging.debug("G MLE loss at batch {0}: {1:.3f}, lr={2}".format(i, g_logging_meters['train_loss'].avg,
g_optimizer.param_groups[0]['lr']))
g_optimizer.zero_grad()
loss.backward()
# all-reduce grads and rescale by grad_denom
for p in generator.parameters():
if p.requires_grad:
p.grad.data.div_(sample_size)
torch.nn.utils.clip_grad_norm(generator.parameters(), args.clip_norm)
g_optimizer.step()
num_update += 1
# part II: train the discriminator
bsz = sample['target'].size(0)
src_sentence = sample['net_input']['src_tokens']
# train with half human-translation and half machine translation
true_sentence = sample['target']
true_labels = Variable(torch.ones(sample['target'].size(0)).float())
with torch.no_grad():
generator.decoder.is_testing = True
_, prediction = generator(sample)
generator.decoder.is_testing = False
fake_sentence = prediction
fake_labels = Variable(torch.zeros(sample['target'].size(0)).float())
trg_sentence = torch.cat([true_sentence, fake_sentence], dim=0)
labels = torch.cat([true_labels, fake_labels], dim=0)
indices = np.random.permutation(2 * bsz)
trg_sentence = trg_sentence[indices][:bsz]
labels = labels[indices][:bsz]
if use_cuda:
labels = labels.cuda()
disc_out = discriminator(src_sentence, trg_sentence, dataset.dst_dict.pad())
d_loss = d_criterion(disc_out, labels)
acc = torch.sum(torch.round(disc_out).squeeze(1) == labels).float() / len(labels)
d_logging_meters['train_acc'].update(acc)
d_logging_meters['train_loss'].update(d_loss)
# logging.debug("D training loss {0:.3f}, acc {1:.3f} at batch {2}: ".format(d_logging_meters['train_loss'].avg,
# d_logging_meters['train_acc'].avg,
# i))
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
# validation
# set validation mode
generator.eval()
discriminator.eval()
# Initialize dataloader
max_positions_valid = (args.fixed_max_len, args.fixed_max_len)
itr = dataset.eval_dataloader(
'valid',
max_tokens=args.max_tokens,
max_sentences=args.joint_batch_size,
max_positions=max_positions_valid,
skip_invalid_size_inputs_valid_test=True,
descending=True, # largest batch first to warm the caching allocator
shard_id=args.distributed_rank,
num_shards=args.distributed_world_size,
)
# reset meters
for key, val in g_logging_meters.items():
if val is not None:
val.reset()
for key, val in d_logging_meters.items():
if val is not None:
val.reset()
for i, sample in enumerate(itr):
with torch.no_grad():
if use_cuda:
sample['id'] = sample['id'].cuda()
sample['net_input']['src_tokens'] = sample['net_input']['src_tokens'].cuda()
sample['net_input']['src_lengths'] = sample['net_input']['src_lengths'].cuda()
sample['net_input']['prev_output_tokens'] = sample['net_input']['prev_output_tokens'].cuda()
sample['target'] = sample['target'].cuda()
# generator validation
sys_out_batch, _ = generator(sample)
dev_trg_batch = sample['target'].view(-1)
sys_out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))
loss = g_criterion(sys_out_batch, dev_trg_batch)
sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']
loss = loss / sample_size / math.log(2)
g_logging_meters['valid_loss'].update(loss, sample_size)
logging.debug("G dev loss at batch {0}: {1:.3f}".format(i, g_logging_meters['valid_loss'].avg))
# discriminator validation
bsz = sample['target'].size(0)
src_sentence = sample['net_input']['src_tokens']
# train with half human-translation and half machine translation
true_sentence = sample['target']
true_labels = Variable(torch.ones(sample['target'].size(0)).float())
with torch.no_grad():
generator.decoder.is_testing = True
_, prediction = generator(sample)
generator.decoder.is_testing = False
fake_sentence = prediction
fake_labels = Variable(torch.zeros(sample['target'].size(0)).float())
trg_sentence = torch.cat([true_sentence, fake_sentence], dim=0)
labels = torch.cat([true_labels, fake_labels], dim=0)
indices = np.random.permutation(2 * bsz)
trg_sentence = trg_sentence[indices][:bsz]
labels = labels[indices][:bsz]
if use_cuda:
labels = labels.cuda()
disc_out = discriminator(src_sentence, trg_sentence, dataset.dst_dict.pad())
d_loss = d_criterion(disc_out, labels)
acc = torch.sum(torch.round(disc_out).squeeze(1) == labels).float() / len(labels)
d_logging_meters['valid_acc'].update(acc)
d_logging_meters['valid_loss'].update(d_loss)
# logging.debug("D dev loss {0:.3f}, acc {1:.3f} at batch {2}".format(d_logging_meters['valid_loss'].avg,
# d_logging_meters['valid_acc'].avg, i))
torch.save(generator,
open(checkpoints_path + "joint_{0:.3f}.epoch_{1}.pt".format(g_logging_meters['valid_loss'].avg, epoch_i),
'wb'), pickle_module=dill)
if g_logging_meters['valid_loss'].avg < best_dev_loss:
best_dev_loss = g_logging_meters['valid_loss'].avg
torch.save(generator, open(checkpoints_path + "best_gmodel.pt", 'wb'), pickle_module=dill)
def update_learning_rate(update_times, target_times, init_lr, lr_shrink, optimizer):
lr = init_lr * (lr_shrink ** (update_times // target_times))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == "__main__":
ret = parser.parse_known_args()
options = ret[0]
if ret[1]:
logging.warning("unknown arguments: {0}".format(parser.parse_known_args()[1]))
main(options)