-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_ood_detection.py
213 lines (168 loc) · 6.68 KB
/
eval_ood_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import torch
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.engine import build_trainer
import numpy as np
from utils.train_eval_util import set_val_loader, set_ood_loader_ImageNet
from utils.detection_util import get_and_print_results
from utils.plot_util import plot_distribution
import trainers.locoop
import datasets.imagenet
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def reset_cfg(cfg, args):
if args.root:
cfg.DATASET.ROOT = args.root
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
if args.resume:
cfg.RESUME = args.resume
if args.seed:
cfg.SEED = args.seed
if args.trainer:
cfg.TRAINER.NAME = args.trainer
if args.backbone:
cfg.MODEL.BACKBONE.NAME = args.backbone
if args.lambda_value:
cfg.lambda_value = args.lambda_value
if args.topk:
cfg.topk = args.topk
def extend_cfg(cfg):
"""
Add new config variables.
E.g.
from yacs.config import CfgNode as CN
cfg.TRAINER.MY_MODEL = CN()
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
cfg.TRAINER.MY_MODEL.PARAM_C = False
"""
from yacs.config import CfgNode as CN
cfg.TRAINER.LOCOOP = CN()
cfg.TRAINER.LOCOOP.N_CTX = 16 # number of context vectors
cfg.TRAINER.LOCOOP.CSC = False # class-specific context
cfg.TRAINER.LOCOOP.CTX_INIT = "" # initialization words
cfg.TRAINER.LOCOOP.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.LOCOOP.CLASS_TOKEN_POSITION = "end" # 'middle' or 'end' or 'front'
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
if args.dataset_config_file:
cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
# 4. From optional input arguments
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def main(args):
import clip_w_local
cfg = setup_cfg(args)
_, preprocess = clip_w_local.load(cfg.MODEL.BACKBONE.NAME)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
if args.in_dataset in ['imagenet']:
out_datasets = ['iNaturalist', 'SUN', 'places365', 'Texture']
trainer = build_trainer(cfg)
trainer.load_model(args.model_dir, epoch=args.load_epoch)
id_data_loader = set_val_loader(args, preprocess)
print('*********\n*********')
print(f'Evaluating on ID dataset:')
in_score_mcm, in_score_gl, id_accuracy = trainer.test_ood(id_data_loader, args.T, id_flag=True)
print(f'Classification of ID dataset:{(id_accuracy*100):.1f}%')
print('*********\n*********')
auroc_list_mcm, aupr_list_mcm, fpr_list_mcm = [], [], []
auroc_list_gl, aupr_list_gl, fpr_list_gl = [], [], []
for out_dataset in out_datasets:
print(f"Evaluting OOD dataset {out_dataset}")
ood_loader = set_ood_loader_ImageNet(args, out_dataset, preprocess)
out_score_mcm, out_score_gl = trainer.test_ood(ood_loader, args.T, id_flag=False)
print("MCM score")
get_and_print_results(args, in_score_mcm, out_score_mcm,
auroc_list_mcm, aupr_list_mcm, fpr_list_mcm)
print('******')
print("GL-MCM score")
get_and_print_results(args, in_score_gl, out_score_gl,
auroc_list_gl, aupr_list_gl, fpr_list_gl)
print('*********\n*********')
plot_distribution(args, in_score_mcm, out_score_mcm, out_dataset, score='MCM')
plot_distribution(args, in_score_gl, out_score_gl, out_dataset, score='GLMCM')
print("MCM avg. FPR:{}, AUROC:{}, AUPR:{}".format(np.mean(fpr_list_mcm), np.mean(auroc_list_mcm), np.mean(aupr_list_mcm)))
print("GL-MCM avg. FPR:{}, AUROC:{}, AUPR:{}".format(np.mean(fpr_list_gl), np.mean(auroc_list_gl), np.mean(aupr_list_gl)))
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument('--in_dataset', default='imagenet', type=str,
choices=['imagenet'], help='in-distribution dataset')
parser.add_argument("--output-dir", type=str, default="", help="output directory")
parser.add_argument(
"--resume",
type=str,
default="",
help="checkpoint directory (from which the training resumes)",
)
parser.add_argument(
"--seed", type=int, default=-1, help="only positive value enables a fixed seed"
)
parser.add_argument(
"--config-file", type=str, default="", help="path to config file"
)
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
parser.add_argument(
"--model-dir",
type=str,
default="",
help="load model from this directory for eval-only mode",
)
parser.add_argument(
"--load-epoch", type=int, help="load model weights at this epoch for evaluation"
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="modify config options using the command-line",
)
# augment for LoCoOp
parser.add_argument('--lambda_value', type=float, default=1,
help='temperature parameter')
parser.add_argument('--topk', type=int, default=200,
help='topk')
# augment for MCM and GL-MCM
parser.add_argument('-b', '--batch-size', default=128, type=int,
help='mini-batch size')
parser.add_argument('--T', type=float, default=1,
help='temperature parameter')
args = parser.parse_args()
main(args)