The Pytorch implementation is from ultralytics/yolov3. It can load yolov4.cfg and yolov4.weights(from AlexeyAB/darknet).
- Input shape
INPUT_H
,INPUT_W
defined in yololayer.h - Number of classes
CLASS_NUM
defined in yololayer.h - FP16/FP32 can be selected by the macro
USE_FP16
in yolov4.cpp - GPU id can be selected by the macro
DEVICE
in yolov4.cpp - NMS thresh
NMS_THRESH
in yolov4.cpp - bbox confidence threshold
BBOX_CONF_THRESH
in yolov4.cpp BATCH_SIZE
in yolov4.cpp
- generate yolov4.wts from pytorch implementation with yolov4.cfg and yolov4.weights, or download .wts from model zoo
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone -b archive https://github.com/ultralytics/yolov3.git
// download yolov4.weights from https://github.com/AlexeyAB/darknet#pre-trained-models
cp {tensorrtx}/yolov4/gen_wts.py {ultralytics/yolov3/}
cd {ultralytics/yolov3/}
python gen_wts.py yolov4.weights
// a file 'yolov4.wts' will be generated.
// the master branch of yolov3 should work, if not, you can checkout be87b41aa2fe59be8e62f4b488052b24ad0bd450
- put yolov4.wts into {tensorrtx}/yolov4, build and run
mv yolov4.wts {tensorrtx}/yolov4/
cd {tensorrtx}/yolov4
mkdir build
cd build
cmake ..
make
sudo ./yolov4 -s // serialize model to plan file i.e. 'yolov4.engine'
sudo ./yolov4 -d ../../yolov3-spp/samples // deserialize plan file and run inference, the images in samples will be processed.
- check the images generated, as follows. _zidane.jpg and _bus.jpg
See the readme in home page.