-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tile_vae.py
216 lines (194 loc) · 6.74 KB
/
train_tile_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
# Copyright @ 2023 wdcqc/aieud project.
# Open-source under license obtainable in project root (LICENSE.md).
import torch, torch.nn as nn
import numpy as np, os, re, json, sys, time, shutil, argparse
from PIL import Image
# Import VAEs
from diffusers import AutoencoderKL
from wfd.wf_diffusers import AutoencoderTile
from torchinfo import summary
# SCMap utilities
from wfd.scmap import randomize_subtiles, get_cv5_data, process_input_maps, get_shrink_mapping
from wfd.scmap import get_default_output_map_data, replace_tile_data, get_map_data, get_tile_data
from wfd import SCInputMapsDataset, SCRandomMapsDataset
# Train loop
from wfd import train_loop
from wfd import default_loss_weights
def round_to_multiples_of_n(x, n):
return x + (n - x%n)%n
def decode_image(tensor):
x = (tensor.transpose((1, 2, 0)) + 1) * 127.5
x = x.astype(np.uint8)
return Image.fromarray(x)
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--model_config",
type=str,
default=None,
help="Path to TileVAE config json file.",
)
parser.add_argument(
"--train_config",
type=str,
default=None,
help="Path to training config json file.",
)
parser.add_argument(
"--model_path",
type=str,
default=None,
help="Path to saved TileVAE model (`save_pretrained`).",
)
parser.add_argument(
"--output",
type=str,
default=None,
help="Path to TileVAE model to output.",
)
parser.add_argument(
"--save_dataset_wfc",
type=str,
default=None,
help="Path to save dataset WFC parameters. (npz format)",
)
parser.add_argument(
"--data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of maps.",
)
parser.add_argument(
"--img_size",
type=int,
nargs=2,
default=(512, 512),
help="The size for generated images from map tiles.",
)
parser.add_argument(
"--tile_size",
type=int,
nargs=2,
default=(32, 32),
help="The size of tile matrix sliced from input maps.",
)
parser.add_argument(
"--autosave",
type=int,
default=100,
help="Save training results every N steps.",
)
parser.add_argument(
"--image_vae",
type=str,
default="runwayml/stable-diffusion-v1-5",
help="The path to image VAE model (`AutoencoderKL`). Can either be a huggingface hub or a local path.",
)
parser.add_argument(
"--random_dataset",
action="store_true",
help="Whether or not to use a randomized tiles dataset.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="The thing that makes a dev cool.",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
if args.output is None and args.model_path is not None:
args.output = args.model_path
if args.model_config is None and args.model_path is None:
raise ValueError("Either model_config or model_path needs to be specified.")
return args
def main(args):
print("[ENV] TORCH_VERSION =", torch.__version__)
# Load the dataset
data_dir = args.data_dir
maps = [os.path.join(data_dir, fn) for fn in os.listdir(data_dir)]
w, h = args.tile_size
dataset = SCInputMapsDataset(maps, w = w, h = h, img_size = args.img_size)
if args.random_dataset:
dataset_r = SCRandomMapsDataset(dataset.tileset, w = w, h = h, img_size = args.img_size, shrink_mappings=dataset.shrink_mappings, freqs=dataset.freqs_shrink)
print("[DATASET] TILE_COUNT =", dataset.shrink_count)
# Save WFC
if args.save_dataset_wfc is not None:
dataset.save_wfc(args.save_dataset_wfc)
# Create or load tilenet VAE
if args.model_config is not None:
with open(args.model_config, encoding = "utf-8") as fp:
config = json.load(fp)
tile_count = round_to_multiples_of_n(dataset.shrink_count, config["conv_init_groups"])
config["in_channels"] = tile_count
config["out_channels"] = tile_count
tilenet = AutoencoderTile(**config)
elif args.model_path is not None:
tilenet = AutoencoderTile.from_pretrained(args.model_path)
tile_count = tilenet.in_channels
else:
raise NotImplementedError
tilenet.to(args.device)
# Print a summary
summary(tilenet, input_size = (1, tile_count, h, w))
# Create or load image VAE
vae = AutoencoderKL.from_pretrained(args.image_vae)
vae.to(args.device)
# Load training config
if args.train_config is not None:
with open(args.train_config, encoding = "utf-8") as fp:
train_config = json.load(fp)
else:
train_config = {
"epochs" : 5,
"learning_rate" : 0.001,
"loss_weights" : default_loss_weights(),
"recon_temperature" : 0.01,
"batch_size" : 4,
"nudge" : 5,
"nudge_loss_type" : "ce",
"clamp_grad" : 10,
"grad_accum" : 1,
"log_interval" : 100,
}
try:
os.makedirs(os.path.pathname(args.output))
except:
pass
# Start training
try:
print("[INFO] Starting Tilenet VAE training...")
train_loop(
tilenet,
vae,
dataset_r if args.random_dataset else dataset,
tile_count = tile_count,
epochs = train_config["epochs"],
lr = train_config["learning_rate"],
batch_size = train_config["batch_size"],
clamp = train_config["clamp_grad"],
loss_weights = train_config["loss_weights"],
recon_temperature = train_config["recon_temperature"],
max_nudge = train_config["nudge"],
nudge_loss_type = train_config["nudge_loss_type"],
grad_accum = train_config["grad_accum"],
log_interval = train_config["log_interval"],
device = args.device,
autosave = args.autosave,
autosave_path = args.output,
)
except KeyboardInterrupt as ke:
# note that this won't work when the script is run from command line
tilenet.save_pretrained(args.output)
print("[INFO] Received KeyboardInterrupt, saved training result to {}".format(args.output))
raise ke
else:
tilenet.save_pretrained(args.output)
print("[INFO] Training finished, saved training result to {}".format(args.output))
if __name__ == "__main__":
args = parse_args()
main(args)