-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScaling_law.nb
1304 lines (1199 loc) · 46.6 KB
/
Scaling_law.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 46306, 1296]
NotebookOptionsPosition[ 42108, 1149]
NotebookOutlinePosition[ 42650, 1168]
CellTagsIndexPosition[ 42607, 1165]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"num", " ", "=", "15"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nulist", " ", "=", " ",
RowBox[{"2", " ", "*", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"Range", "[", "num", "]"}], "*",
RowBox[{
RowBox[{"Pi", "/", "2"}], "/",
RowBox[{"(",
RowBox[{"num", "+", "1"}], ")"}]}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"omega", " ", "=",
RowBox[{
RowBox[{"Delete", "[",
RowBox[{"nulist", ",", "num"}], "]"}], "/",
RowBox[{"nulist", "[",
RowBox[{"[", "num", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"orders", " ", "=", " ",
RowBox[{"Range", "[",
RowBox[{"5", ",", " ", "100", ",", " ", "1"}], " ", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Elist", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"Length", "[", "orders", "]"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"qlist", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"Length", "[", "orders", "]"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"s1", " ", "=", " ", "1"}], ",", " ",
RowBox[{"s1", "\[LessEqual]",
RowBox[{"Length", "[", "orders", "]"}]}], ",", " ",
RowBox[{"s1", "++"}], ",", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"QQ", " ", "=", " ",
RowBox[{"10", "^",
RowBox[{"orders", "[",
RowBox[{"[", "s1", "]"}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"AA", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"i", ",", " ", "1", ",", " ", "num"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "num"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"1", ",", " ", "1"}], "]"}], "]"}], " ", "=", " ", "1"}], ";",
" ", "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "1"}], ",", " ",
RowBox[{"i", " ", "\[LessEqual]",
RowBox[{"num", "-", "1"}]}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"1", ",", " ",
RowBox[{"i", "+", "1"}]}], "]"}], "]"}], "=",
RowBox[{"Round", "[",
RowBox[{"QQ", "*",
RowBox[{"omega", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "]"}]}], ";"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "2"}], ",", " ",
RowBox[{"i", "\[LessEqual]", "num"}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"i", ",", "i"}], "]"}], "]"}], " ", "=", " ", "QQ"}],
";"}]}], " ", "]"}], ";", "\[IndentingNewLine]",
RowBox[{"bb", " ", "=", " ",
RowBox[{"LatticeReduce", "[", "AA", "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"q", " ", "=", " ",
RowBox[{"Abs", "[",
RowBox[{"bb", "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"qlist", "[",
RowBox[{"[", "s1", "]"}], "]"}], " ", "=", " ", "q"}], ";", " ",
"\[IndentingNewLine]",
RowBox[{"error", " ", "=",
RowBox[{"Block", "[",
RowBox[{
RowBox[{"{",
RowBox[{"$MaxExtraPrecision", "=", "1000"}], "}"}], ",", " ",
RowBox[{"N", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"q", "*", "omega"}], " ", "-", " ",
RowBox[{"Round", "[",
RowBox[{"q", "*", " ", "omega"}], " ", "]"}]}], "]"}], ",", " ",
"220"}], "]"}]}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Elist", "[",
RowBox[{"[", "s1", "]"}], "]"}], " ", "=", " ",
RowBox[{"Max", "[", "error", "]"}]}], ";"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"qlist", "[",
RowBox[{"[", "s1", "]"}], "]"}], "]"}], ",", " ",
RowBox[{"-",
RowBox[{"Log", "[",
RowBox[{"Elist", "[",
RowBox[{"[", "s1", "]"}], "]"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s1", ",", " ", "1", ",", " ",
RowBox[{"Length", "[", "orders", "]"}], ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pd", " ", "=", " ",
RowBox[{"ListPlot", "[",
RowBox[{"data", ",", " ",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<ln(q)\>\"", ",", "\"\<ln(1/error)\>\""}], "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "15"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"f", " ", "=", " ",
RowBox[{"Fit", "[",
RowBox[{"data", ",", " ",
RowBox[{"{",
RowBox[{"1", ",", "x"}], "}"}], ",", "x"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fd", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", "200"}], "}"}], ",", " ",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<ln(q)\>\"", ",", "\"\<ln(1/error)\>\""}], "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "15"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]", " ",
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ff", " ", "=", " ",
RowBox[{"Show", "[", " ",
RowBox[{"fd", ",", "pd"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t12", " ", "=", " ",
RowBox[{"Graphics", "[",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<(a) N=15\>\"", ",", "15"}], "]"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "13"}], "}"}]}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"t1", " ", "=", " ",
RowBox[{"Show", "[",
RowBox[{"ff", ",", "t12"}], "]"}]}]}], "Input",
CellChangeTimes->{
3.7015864928364506`*^9, {3.7015867689562435`*^9, 3.7015867927906065`*^9}, {
3.701589465095454*^9, 3.7015895126061716`*^9}, {3.7022009949549255`*^9,
3.70220101829226*^9}, {3.702201095326666*^9, 3.7022011028190947`*^9}, {
3.7022011331438293`*^9, 3.702201171083999*^9}, {3.702201207307071*^9,
3.7022012121353474`*^9}, {3.7022012664214525`*^9, 3.702201272688811*^9}, {
3.7022014268206263`*^9, 3.7022014775715294`*^9}, {3.7022015215300436`*^9,
3.702201523881178*^9}, {3.7022020314842114`*^9, 3.702202064243085*^9}, {
3.7022022572971272`*^9, 3.70220227989942*^9}, 3.7022023287192125`*^9,
3.7022023602270145`*^9, 3.702202417247276*^9, {3.7022027775078816`*^9,
3.7022028342511272`*^9}, {3.7022029409732313`*^9, 3.702202999845598*^9},
3.702203659441325*^9, {3.7022047634054685`*^9, 3.7022048314883623`*^9}, {
3.7027842364511795`*^9, 3.702784261533614*^9}, 3.7027843827955503`*^9, {
3.702809072524722*^9, 3.702809083208333*^9}, {3.702809114185105*^9,
3.7028091152581663`*^9}, {3.7028091672131376`*^9, 3.702809167844174*^9}}],
Cell[BoxData[
RowBox[{"0.\
769333206882268433678435394887790879630746188253455547018150085135274479974666\
311211386120191591707160896763982752837985161174793185373493993116488631116007\
25067695833645588851241914460958767550540568841177215096554088223950891942`\
217.87892604497134", "+",
RowBox[{
"0.0708458136966007508099589478931022262473024678242973143121957910496863813\
566298570572127207069723454414967833022306099191203166206641381527011572911922\
276300034350542213546143587652355847468359486848801138307354342305319904073226\
19`218.8947829363806", " ", "x"}]}]], "Output",
CellChangeTimes->{
3.7015863508103275`*^9, {3.701586778249775*^9, 3.7015867967698345`*^9}, {
3.7015894690866823`*^9, 3.701589522005709*^9}, 3.7022010064485826`*^9,
3.7022011112985797`*^9, {3.702201161170432*^9, 3.702201178494423*^9},
3.702201220365818*^9, 3.702201280869279*^9, 3.7022014880961313`*^9,
3.7022015338367476`*^9, {3.702202267864732*^9, 3.702202288684922*^9}, {
3.702202341690954*^9, 3.702202368753502*^9}, 3.7022028438906784`*^9, {
3.7022029724520316`*^9, 3.702203007443033*^9}, 3.702203667299775*^9, {
3.7022047771572547`*^9, 3.702204839224805*^9}, 3.7027842739653254`*^9,
3.702784393189145*^9, {3.7028091015733833`*^9, 3.7028091264888086`*^9},
3.702809175435608*^9}],
Cell[BoxData[
GraphicsBox[{{{{{}, {},
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVj3k41HkAh0mhYx5n5EgMYazfYrMl0e/TYegwRXSQmGHMV3KzHSvpUMo4
SrRWLOWo7IMVlaxlpqKUxaRstKEe18YmEY2MtX+8z/vn+7xGvDB3/jw5OTnX
Of43M3Xmeq5B2/rewWJnbu4gfVeZtSKElNH2w7oPpKJBWnSktMCc1NHpH5LX
X+4bpBusIwSKpIV2+hz1faPlEP1YKHGZEHTTNxVgTNUM0U/sT1cPCz7Q4QZ/
yaY6/qGbLnZFDApmaTkP5TtpaiP01lolTr9ABWm+tup+4lG6mbF64XwfQzxW
mJzgZkzQG1Od6ot3mCPkWuhuoZaU5ltJGTYMayyZbu/SPimjXVn8j1rOtuA2
cN7fL5RHRfvxmCd2dogUMsxkvQpYp25RNv+EA1TDjudYcBQhmL6UU7gX+LU0
oEipTBlhDQOrylw3Ija4aGSqfxEueCmunDm0GZ2bs8Kecxjwb/wx0IawEZrd
byVOVoFISccteJ8LThR7isp7VGGjFp85FL0VKamqyjHq6vD75GjJObQda+5M
hTyw0kB+7iP9yWQOzILXRijyNXE7xb5L4r4TGX9W1eZfXoro+447c7a7ISfc
l9VYpoW6psKx897uGM7jftf7VhtBzmtrg/buwkuVi14J8jq4esOmKvigBxQZ
OoYGdrq4+Kn2ZPhhT1Tee/2tSpAe+m/F/EAid0N2rXn/hQR9PGRf+unUqT1I
0dM2l1Yvh/yOzrep8XtRLUlWH39lALkNd+Tzju4Dzw5s9vgKJGpPukrOeYGV
WZjETjdEuJe/ePK0N0LLRApWTCP0nrQNoDP2o0PlQpNarRE007M6z+f7IM55
tMrQk4kiVYujjdkHEGUwUj7+lglR5AonsxJfJDlkSsWxxsg1zNN39PDD6JcX
u3YvMUFtrFSOtPohM+V229IsExhtU/pqvIcL34OOuS02K1HZwkp61c5FdJ/P
MU79SggbZNaGPjyUFlsUNnqZIj1q6KDfax5sF6Z0L3hvitilBirMff6Qbkhd
H37EDDdZC5qie/zxTuQw3K5mDsVxeR3RgQDo9sbflOWZo9j6t7jcgQBEOUdU
MR1YYPFucWZC+FicMNsX2c5C15bqCs/3fHzkmpgm8iwguX6MoqMCMZ0wUXnl
qwWmbrs5MMcC4bbFZ9ch4TeYvRdZdTZUgIF3PK0QHUtss2Y7xU4IkPdI05xU
WKLRxyooOIqgmO2zxXwDBXV/UpMTQ9BcYF9RuInCAZLPaD1MMD5vmZ4xm8Ln
SI0K21iCTXWS4eXbKJgkTkpnzhC8WeOSpuFJIb6iTpiWSaDBWtUhIxTslXaW
V1UTxC9eyH+RRuHskvPzBmvmekH9ze7pFNrUxB66f8z1Gh+sbs2gQPRtv8SJ
CfTOxCk//ZnCFZtlG12eEtz9+qmkvoDCuHfP887XBCMjb8ZK7lEAV8eU0U2g
uf13b1YNhaRA9yN0L8G6W1kPi2opMCMe6hf0ESQGemTmiym4nb3BD/mXwKT7
ydorzyhcTeq9+8sowVbH4muaLRQG03QXScYIIrLPLL7UNveTLSxdPUlQv4f+
W/iSwrO8R3JBXwgGqvTZi15R0C6SuWdPEzA0paXnuijwStYUNs8QrIrs0F7w
hkJpefjk7CyBV2tl/KkeCv8BlTAtAw==
"]]}}, {}, {}}, {{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJyVyX1Q0wUAxvHJKHA05P0lDNloQDJeDoiG4vGwJTCoyftgwxyMbRAEtLho
iIWbyB2V2tKDJThebJhABXcEIm9aVIQkB+pclyEQg9spdECQJVD96++PnX88
99znvrSc4mSJBYlEEv23/z+Kv5bF87BHyN3bF5SnV6KKQyJCv5jxQvr3uQ62
U2sES1frJ4f/CkDLSujUpisJT7qU1fZ7ASMM0mf85TFNJDzQT+35NuZl1ITq
ryaU70Dx7dhe6g0WUuojuGtsMsEx3oWmRnokFjV1C60CS3C3RfHsc/uQVmTo
IfMsUDriYK0sjMKji5RWZdtOs36olB74M4EDzSbDoov+HB5VJo05Xuagu6ZA
PuJna9byybmKj9JjMbGPJOS17IKeU70kKYnD8mj0mFJhT7DmBnv1yP14JLmV
az6TOsDDoOp7yyMeVTZ9xZl6ewSf8Y4s476O0rFo5ftJjrAbHxS/68yDSfce
x93giLc1kwc6jDwM1VqEBLg7EazV8QfVzYlo0MzbfcdzJrhkc7osZyAJguyi
i50vuMDByDo0LkpG52JlwyuNrmatq60OvNWXAsfexKpD/m44Tmu+bqhMhVyX
SKI4eiB6di30Wcs0rCge9octuxN67XCe75dzaTBIsgYEnebdp2qamxDwoYr7
YDFU6onCH7XKRL8MbJX+HURyJfre6l2SjJkJ8e79wXH0PWBPJzCbpjIRfSXr
9NlEL4Ktdrbt6LgigCK8uzdQR7TLeriYc18Imx9uXjWBhp4NrwtV2VnQHuwJ
p0QQ7Uk3qasjDiPtrKdp+w06DjIqaFaPD8NSOEtPTnp6b9jMGLesRGAEUdQK
O2+Cl36zpa1dFuGfiJ5dmbMvmvWJa9Tm1SPZIMsuWd87zyD4tbjPf1JY52Aj
Jb5s3eCD9oFLm3RBDpantQ/kHB9Cf9L9Le0Cb6oYppvc1qObRNs/zn0+o1MM
prvbV0V1vjjaM3+srFyMekpmmOGOL84dS41yoediRNzyzfUwPwwJr1GE3FwE
Vzfrpf4vPbXHT1ATeB9L0K0aZaXG7sX6KeWHhnYJjo9tp58Xm/fXs9zp0Qop
WNqZoDtb5h38iVFfpJChRnXSVWvJxECgkb00JMOZCf4famcm6pI/lermZega
VZOprzJxK2PGcndQHmiDfL8CHhOm0p9ZDfI8sFfzWmPJAWad37VwqsIpH6r+
X95ZoAbCdVjUUdmcj8aVMSeq0LxL9mY4789+E5HBjF/7fIII/hexY5wy
"]]}, {}}, {}, {}, {{}, {}}}}, InsetBox[
StyleBox["\<\"(a) N=15\"\>",
StripOnInput->False,
FontSize->15], {30, 13}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"ln(q)\"", TraditionalForm],
FormBox["\"ln(1/error)\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->15,
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 200}, {0., 14.938495657035833`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.7015863508103275`*^9, {3.701586778249775*^9, 3.7015867967698345`*^9}, {
3.7015894690866823`*^9, 3.701589522005709*^9}, 3.7022010064485826`*^9,
3.7022011112985797`*^9, {3.702201161170432*^9, 3.702201178494423*^9},
3.702201220365818*^9, 3.702201280869279*^9, 3.7022014880961313`*^9,
3.7022015338367476`*^9, {3.702202267864732*^9, 3.702202288684922*^9}, {
3.702202341690954*^9, 3.702202368753502*^9}, 3.7022028438906784`*^9, {
3.7022029724520316`*^9, 3.702203007443033*^9}, 3.702203667299775*^9, {
3.7022047771572547`*^9, 3.702204839224805*^9}, 3.7027842739653254`*^9,
3.702784393189145*^9, {3.7028091015733833`*^9, 3.7028091264888086`*^9},
3.702809175480611*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.702809188462353*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.702784407571967*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.702784290283259*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.702203679716485*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.7022030215768414`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.702202304762842*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"t1", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.7022015490286164`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"%973", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.7022013264268847`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"%142", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.701587286701857*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling.eps\>\"", ",",
"pd", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L \
files\\\\2017_poincare_recurrence\\\\scaling.eps\"\>"], "Output",
CellChangeTimes->{3.7015863508143272`*^9, 3.701586552412858*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["omega"], "Input",
CellChangeTimes->{{3.7015868369991355`*^9, 3.70158683777818*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["3"]}],
RowBox[{"1", "+",
SqrtBox["3"]}]], ",",
FractionBox[
SqrtBox["2"],
RowBox[{"1", "+",
SqrtBox["3"]}]], ",",
FractionBox["2",
RowBox[{"1", "+",
SqrtBox["3"]}]], ",",
FractionBox[
SqrtBox["6"],
RowBox[{"1", "+",
SqrtBox["3"]}]]}], "}"}]], "Output",
CellChangeTimes->{3.701586838913245*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sin", "[",
RowBox[{"Pi", "/", "12"}], "]"}]], "Input",
CellChangeTimes->{{3.701586929200409*^9, 3.7015869374848833`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["3"]}],
RowBox[{"2", " ",
SqrtBox["2"]}]]], "Output",
CellChangeTimes->{3.701586938553944*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"1", "/", "14"}], "]"}]], "Input",
CellChangeTimes->{{3.701589577430879*^9, 3.7015895840222564`*^9}}],
Cell[BoxData["0.07142857142857142`"], "Output",
CellChangeTimes->{3.7015895850183134`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"num", " ", "=", "5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nulist", " ", "=", " ",
RowBox[{"2", " ", "*", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"Range", "[", "num", "]"}], "*",
RowBox[{
RowBox[{"Pi", "/", "2"}], "/",
RowBox[{"(",
RowBox[{"num", "+", "1"}], ")"}]}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"omega", " ", "=",
RowBox[{
RowBox[{"Delete", "[",
RowBox[{"nulist", ",", "num"}], "]"}], "/",
RowBox[{"nulist", "[",
RowBox[{"[", "num", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"orders", " ", "=", " ",
RowBox[{"Range", "[",
RowBox[{"5", ",", " ", "60", ",", " ", "1"}], " ", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Elist", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"Length", "[", "orders", "]"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"qlist", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"Length", "[", "orders", "]"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"s1", " ", "=", " ", "1"}], ",", " ",
RowBox[{"s1", "\[LessEqual]",
RowBox[{"Length", "[", "orders", "]"}]}], ",", " ",
RowBox[{"s1", "++"}], ",", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"QQ", " ", "=", " ",
RowBox[{"10", "^",
RowBox[{"orders", "[",
RowBox[{"[", "s1", "]"}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"AA", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"i", ",", " ", "1", ",", " ", "num"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "num"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"1", ",", " ", "1"}], "]"}], "]"}], " ", "=", " ", "1"}], ";",
" ", "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "1"}], ",", " ",
RowBox[{"i", " ", "\[LessEqual]",
RowBox[{"num", "-", "1"}]}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"1", ",", " ",
RowBox[{"i", "+", "1"}]}], "]"}], "]"}], "=",
RowBox[{"Round", "[",
RowBox[{"QQ", "*",
RowBox[{"omega", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "]"}]}], ";"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "2"}], ",", " ",
RowBox[{"i", "\[LessEqual]", "num"}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{
RowBox[{"AA", "[",
RowBox[{"[",
RowBox[{"i", ",", "i"}], "]"}], "]"}], " ", "=", " ", "QQ"}],
";"}]}], " ", "]"}], ";", "\[IndentingNewLine]",
RowBox[{"bb", " ", "=", " ",
RowBox[{"LatticeReduce", "[", "AA", "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"q", " ", "=", " ",
RowBox[{"Abs", "[",
RowBox[{"bb", "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"qlist", "[",
RowBox[{"[", "s1", "]"}], "]"}], " ", "=", " ", "q"}], ";", " ",
"\[IndentingNewLine]",
RowBox[{"error", " ", "=",
RowBox[{"Block", "[",
RowBox[{
RowBox[{"{",
RowBox[{"$MaxExtraPrecision", "=", "1000"}], "}"}], ",", " ",
RowBox[{"N", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"q", "*", "omega"}], " ", "-", " ",
RowBox[{"Round", "[",
RowBox[{"q", "*", " ", "omega"}], " ", "]"}]}], "]"}], ",", " ",
"220"}], "]"}]}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Elist", "[",
RowBox[{"[", "s1", "]"}], "]"}], " ", "=", " ",
RowBox[{"Max", "[", "error", "]"}]}], ";"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"qlist", "[",
RowBox[{"[", "s1", "]"}], "]"}], "]"}], ",", " ",
RowBox[{"-",
RowBox[{"Log", "[",
RowBox[{"Elist", "[",
RowBox[{"[", "s1", "]"}], "]"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s1", ",", " ", "1", ",", " ",
RowBox[{"Length", "[", "orders", "]"}], ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pd", " ", "=", " ",
RowBox[{"ListPlot", "[",
RowBox[{"data", ",", " ",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<ln(q)\>\"", ",", "\"\<ln(1/error)\>\""}], "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "15"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"f", " ", "=", " ",
RowBox[{"Fit", "[",
RowBox[{"data", ",", " ",
RowBox[{"{",
RowBox[{"1", ",", "x"}], "}"}], ",", "x"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fd", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", "100"}], "}"}], ",", " ",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<ln(q)\>\"", ",", "\"\<ln(1/error)\>\""}], "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "15"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]", " ",
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ff", " ", "=", " ",
RowBox[{"Show", "[",
RowBox[{"fd", ",", " ", "pd"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t12", " ", "=", " ",
RowBox[{"Graphics", "[",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<(b) N=5\>\"", ",", "15"}], "]"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "30"}], "}"}]}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"t2", " ", "=", " ",
RowBox[{"Show", "[",
RowBox[{"ff", ",", "t12"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.7022032758833866`*^9, 3.7022033076212025`*^9}, {
3.702203553680276*^9, 3.7022035649309196`*^9}, {3.7022037181376824`*^9,
3.702203723924013*^9}, 3.702203763047251*^9, 3.702203846809042*^9, {
3.7027839881919804`*^9, 3.702783989518056*^9}, {3.7027840666334667`*^9,
3.7027841258348527`*^9}, {3.702784415465419*^9, 3.7027844238809004`*^9}, {
3.7028091417166796`*^9, 3.7028091607997713`*^9}}],
Cell[BoxData[
RowBox[{"0.\
731928886173794155524005152806047426114334135394175793372842956241569603931008\
330779609677587515647204665360509803031886465132512449061379665009910667839090\
393802732798873732950888426410665156652826588372162706747186111762860902911`\
217.95264564084843", "+",
RowBox[{
"0.3341725244540310921893223621282345058752330034719136214811648440441767215\
146278259043292298819861579950966431045452542306673637582003824136092155443466\
948276184905148370020018768645530967461637165907513986931264592717399255805602\
73`219.3600082085502", " ", "x"}]}]], "Output",
CellChangeTimes->{
3.702203311921448*^9, {3.702203557180476*^9, 3.7022035678510866`*^9},
3.7022037270041895`*^9, 3.702203766905472*^9, 3.7022038495722*^9,
3.702784005462968*^9, {3.702784105295678*^9, 3.702784129873084*^9},
3.702784446102171*^9, 3.702809152579301*^9, 3.7028092178560343`*^9}],
Cell[BoxData[
GraphicsBox[{{{{{}, {},
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVxXk01AkAB/BhZUQjR4qSMdRmUEzkGMfvO7Wuck6On3r1LGkGFeOIZNsR
z+YoiaR1pCcku4hU1rpzpEjWtrvUS/PSUCSFcTTs7h+f92EEhnODZSkUitt/
/l8vU1pSpNNmT5/suiQJExMPFJj0k/wbRFVzqP1Ui5hoi6u6ZcCvJmyzlD+K
1MeJLlMBT57fQvhb+Lr1N44TPRmDznO8Z0SOcEypVOk98Zid1DDJe00oaMil
cisnid6sEcE4b5pYLCpu8537ROxvorq/460Sou5XjXfN54k+msVauSMqmP51
x6PaXgr2Zjq0lntooln6kZ62WR7BJks0Fk0XPayQjnseSnBjBs9sdNqGqKRw
5nS8CmqHfoh5bGWA9zUzle1b1WGjZlgt96MxJqsEtzQWNcBbvlJYSppiHf0J
1Lo1Ed4lNqt2240Ngx+u9R3bgrRD8tulJ8xR7qMYrGCjg6Dus8dZfAuoKsfN
CyN00UbV8grzt8LRO34Zg78zwFIV5k5Es/Fpl8WroO36CPhiZ+x+whbz3nHp
QzHbcLOoU1ty0R6coIbZZNF21F1ijwxygXxDsUma8w5E/2bnWejKAS87rudU
rgFaeks/px7ei7NvFbSzKYYIcbJuCiH3Qfavr09zuUYouM2qDwv9Dv13p62G
W42R9aUpMSLWAbcdnp2ONNiFd3diTvMjHbEQr6b2PtYEjxyv5J0/7wQnV8N7
AwJTyHgMizKFznhiJKUVbGGBwrkvU3zGBS94XQOq7Sxc2CRxG/xpP+Q01wvK
T+9GxKGgdknSAUzlrW01ppvhTaL5MeKqKxYuJk0+/9MMG7KvD6fedEPa6y+J
jFRzlKkYnunOd8cLmY1dAaZ70BZJd9hR6QGHvAfilrE9KNIt1rbz9sSpVcWH
ypkWaEpYovAHPEHv8J6h7rEE4wD1q76fF2aXtiowJixx7xkz/Z8hLyR+c72P
mWWFjK4VU90jXOwWZkdwnayRHTURGvCSi4I+oj10xhoJGjrr9fwPIjNWlLAz
j40K5pre6NGDKLkqp6HiZgP5WRmttqPeiEz++7BozgblpnfPFYm9ESQ2Eg79
Ygtm4B136UkfjJTF0AQBdhhxaaj1+eADZUuBi5Rqj8GS+J1ElC+O2UwGVjTZ
Y6HOy1bvsy+iVLSMHHgEVh9G1qec8sMahk5VpzxwwNTRIWHOD6Ko8PqFAKD7
iElIWBQJ7WqtHP16QC2I31gYQ6LDnsXLvw8c5d+kDcSSCO13Zqs/BOYj1WvN
E0g0TMWOyjYC2y5IlqTJJHyMXxiLWgFhbUvG5VwSFyuudBY/BdhUz5r6BhIr
JUqSrW+BlHWpsuONJMrM9HuvjgHPVdu9NzeTcO1gF9LEAF/bfPFcO4mfRSH7
pBPANZbmXucnJCwZPZkvp4HZw6N/DL8kEVGUbJC/DOB7rW9pr0ls2lWwrCYF
0o9z44g3JJqb6vrTVgA9wSPtW2Mk1r0SRcfLcOCVcjv45EcSFVs4bf5UDgrS
3zy48YmEZyWZ81yBg/HLmxUHP5OQsCN4LoocCPMzqiwkJBwP3aBZ0zh4WtxJ
CVkkMTVxf7RGmYNNZSvc/GUSOWf66wxUOAistCztk5Jgr32XUqzKQVVNhGR1
lYQoT+qvqc7Bv2W/KV4=
"]]}}, {}, {}}, {{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxlx21QEwQAh/FBo8IcCkxU1jheGjCIBewYYwP8b8gYL7mxzW1SnnPBEUOS
IJiDZQEnIOflRTuYdQWIHDabp4gdEnSBYdORELsgDokJQ5si6hyZUFJ95sNz
z/1C1IclBZ4EAoH9X/+/XNeksumoaN9ZOq/JfwVVz1tacs8Eo5JGn2G/txnM
cvlE2RwNybjj1xbui7e0B/N/74qEacKiUbDIcFH5R9btMRjlZupyfANQ8nVa
+MiJWGx3T28STW/HiDbPGdIeh+IhpyOyJhCLZ0mFzxxMeNymY22QilCP7z/2
XkoA6dSD0mxbELKGsgxfGFgIzBvif/tqCM47n1Ffj09C7D1FqyMyFJuKghvf
v8mBp/hOqv7DMBjuxysaOMlg9kbvSKkOQxT/nqUrPBWtPn03fl6gbbDB7L8W
Vgw0kElqPImAP6fHd2WYBy05+qUWPR0f1Dx3+zTycWBsqumFLjoEN4/LB33T
sG1mMupvz2j01s9ylVfTwGd1Gyr/jAbTXy+hU9LBUNl+myIw8HR5/aK8Lx2m
K7IjdSQGCrqlrY+LBFgwbhnzor+BRabLPDyUgZpEoyWgORadNushhkMIMSnj
r7bzcXD35wrWZZkgnZyrcFyPQ6hKU7fOzUJn0Fb2MjMe5RmP3h7/Jgun6U5R
9XfxcNk+Ke8g5kC2JfCYLYUJsoHSwDTnQL3QKfRwMfFZcP+XRK89OFfsHV5D
TNjga72fzo9KRdgjGXZTjieAUzVhfbpVjEKRevKkMwG6H0IU9gEx+Nd+PaWz
sFD7iHiLeFeMWt68pLE3EUMsWeGD5lz8srLjq7NSNsryVpVVK7lgm+WHXp5m
w9tcr119V4LlSL8/2sbZ6GnPdKg7JBBmzL2pa0uCVXP5xZ+EUswxjs0uZnOw
GqB3H9ZKYYyKOzr6kIOk/daPlGEyvDZZZMFd7gZLIhJPD9yQoUiv4t6qTkZz
SX1MV+VeDAbsFBwtScH1zNj2srG9OJM9ajc8ScG5RJfIO0iO2/c7rJu9UnGx
jm+8ekmO5s58vxOPU6GZsvpUQAHLyID1gmkXPKKUMSuXFCgIbjpYIAFMVMrn
+5cUoAgLSwZUAK+0u2/2gBLkNfrDyz2A8x0NTWBUIm+GtS3bDtBNVy4wdu/D
jzRFRf8uHub/4UfYx/eB0Ji0lF7Lw78WtIYp
"]]}, {}}, {}, {}, {{}, {}}}}, InsetBox[
StyleBox["\<\"(b) N=5\"\>",
StripOnInput->False,
FontSize->15], {15, 30}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"ln(q)\"", TraditionalForm],
FormBox["\"ln(1/error)\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->15,
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 100}, {0., 34.14918064959217}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.702203311921448*^9, {3.702203557180476*^9, 3.7022035678510866`*^9},
3.7022037270041895`*^9, 3.702203766905472*^9, 3.7022038495722*^9,
3.702784005462968*^9, {3.702784105295678*^9, 3.702784129873084*^9},
3.702784446102171*^9, 3.702809152579301*^9, 3.702809217884036*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7028092270505605`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.702809198680938*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7027845301149764`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.702784174177618*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7022038604898243`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.702203775392957*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7022037370037613`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7022035806908207`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\>\"", ",",
"t2", ",", "\"\<EPS\>\""}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["\<\"E:\\\\L files\\\\2017_poincare_recurrence\\\\scaling2.eps\"\
\>"], "Output",
CellChangeTimes->{3.7022034813071365`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PacletInstall", "[",
"\"\<D:\\\\My Downloads\\\\MaTex-1.7.0.paclet\>\"", "]"}]], "Input",
CellChangeTimes->{{3.702770060665371*^9, 3.7027701638422728`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"Paclet", "[", "\<\"MaTeX\"\>", ",", "\<\"1.7.0\"\>", ",", "<>", "]"}],
PacletManager`Paclet[