-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpostprocess.cu
146 lines (116 loc) · 5.39 KB
/
postprocess.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include "postprocess.h"
#define MAX_LANDMARK 20
static __device__ void affine_project(float* matrix, float x, float y, float* ox, float* oy){
*ox = matrix[0] * x + matrix[1] * y + matrix[2];
*oy = matrix[3] * x + matrix[4] * y + matrix[5];
}
static __global__ void decode_kernel(float* predict,int NUM_BOX_ELEMENT, int num_bboxes, int num_classes,int ckpt, float confidence_threshold, float* invert_affine_matrix, float* parray, int max_objects){
int position = blockDim.x * blockIdx.x + threadIdx.x;
if (position >= num_bboxes) return;
float* pitem = predict + (5 + num_classes+ckpt*3) * position;
float objectness = pitem[4];
if(objectness < confidence_threshold)
return;
float* class_confidence = pitem + 5;
float confidence = *class_confidence++;
int label = 0;
for(int i = 1; i < num_classes; ++i, ++class_confidence){
if(*class_confidence > confidence){
confidence = *class_confidence;
label = i;
}
}
confidence *= objectness;
if(confidence < confidence_threshold)
return;
int index = atomicAdd(parray, 1);
if(index >= max_objects)
return;
// printf("index %d max_objects %d\n", index,max_objects);
float cx = pitem[0];
float cy = pitem[1];
float width = pitem[2];
float height = pitem[3];
//五个关键点
float *landmarks = pitem+5+num_classes;
float landmark_array[MAX_LANDMARK*2];
for (int i = 0; i<ckpt; i++)
{
landmark_array[2*i]=landmarks[3*i];
landmark_array[2*i+1]=landmarks[3*i+1];
}
float left = cx - width * 0.5f;
float top = cy - height * 0.5f;
float right = cx + width * 0.5f;
float bottom = cy + height * 0.5f;
affine_project(invert_affine_matrix, left, top, &left, &top);
affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
for(int i = 0; i<ckpt; i++)
{
affine_project(invert_affine_matrix, landmark_array[2*i],landmark_array[2*i+1],&landmark_array[2*i],&landmark_array[2*i+1]);
}
// affine_project(invert_affine_matrix, x5,y5,&x5,&y5);
float* pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
*pout_item++ = left;
*pout_item++ = top;
*pout_item++ = right;
*pout_item++ = bottom;
*pout_item++ = confidence;
*pout_item++ = label;
*pout_item++ = 1; // 1 = keep, 0 = ignore
for(int i = 0; i<ckpt; i++)
{
*pout_item++=landmark_array[2*i];
*pout_item++=landmark_array[2*i+1];
}
}
static __device__ float box_iou(
float aleft, float atop, float aright, float abottom,
float bleft, float btop, float bright, float bbottom
){
float cleft = max(aleft, bleft);
float ctop = max(atop, btop);
float cright = min(aright, bright);
float cbottom = min(abottom, bbottom);
float c_area = max(cright - cleft, 0.0f) * max(cbottom - ctop, 0.0f);
if(c_area == 0.0f)
return 0.0f;
float a_area = max(0.0f, aright - aleft) * max(0.0f, abottom - atop);
float b_area = max(0.0f, bright - bleft) * max(0.0f, bbottom - btop);
return c_area / (a_area + b_area - c_area);
}
static __global__ void nms_kernel(float* bboxes, int max_objects, float threshold,int NUM_BOX_ELEMENT){
int position = (blockDim.x * blockIdx.x + threadIdx.x);
int count = min((int)*bboxes, max_objects);
if (position >= count)
return;
// left, top, right, bottom, confidence, class, keepflag
float* pcurrent = bboxes + 1 + position * NUM_BOX_ELEMENT;
for(int i = 0; i < count; ++i){
float* pitem = bboxes + 1 + i * NUM_BOX_ELEMENT;
if(i == position || pcurrent[5] != pitem[5]) continue;
if(pitem[4] >= pcurrent[4]){
if(pitem[4] == pcurrent[4] && i < position)
continue;
float iou = box_iou(
pcurrent[0], pcurrent[1], pcurrent[2], pcurrent[3],
pitem[0], pitem[1], pitem[2], pitem[3]
);
if(iou > threshold){
pcurrent[6] = 0; // 1=keep, 0=ignore
return;
}
}
}
}
void decode_kernel_invoker(float* predict, int NUM_BOX_ELEMENT,int num_bboxes,int num_classes,int ckpt, float confidence_threshold, float* invert_affine_matrix, float* parray, int max_objects, cudaStream_t stream)
{
int block = 256;
int grid = ceil(num_bboxes / (float)block);
decode_kernel<<<grid, block, 0, stream>>>(predict,NUM_BOX_ELEMENT, num_bboxes, num_classes,ckpt, confidence_threshold, invert_affine_matrix, parray, max_objects);
}
void nms_kernel_invoker(float* parray, float nms_threshold, int max_objects, cudaStream_t stream,int NUM_BOX_ELEMENT){
int block = max_objects<256? max_objects:256;
int grid = ceil(max_objects / (float)block);
nms_kernel<<<grid, block, 0, stream>>>(parray, max_objects, nms_threshold,NUM_BOX_ELEMENT);
}