This repository has been archived by the owner on Jan 10, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
270 lines (236 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# ------------------------------------------------------------------------
# Modified by Wei-Jie Huang
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import os
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader
import datasets
import datasets.DAOD as DAOD
import util.misc as utils
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from config import get_cfg_defaults
def setup(args):
cfg = get_cfg_defaults()
if args.config_file:
cfg.merge_from_file(args.config_file)
if args.opts:
cfg.merge_from_list(args.opts)
utils.init_distributed_mode(cfg)
cfg.freeze()
if cfg.OUTPUT_DIR:
Path(cfg.OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
os.system(f'cp {args.config_file} {cfg.OUTPUT_DIR}')
ddetr_src = 'models/deformable_detr.py'
ddetr_des = Path(cfg.OUTPUT_DIR) / 'deformable_detr.py.backup'
dtrans_src = 'models/deformable_transformer.py'
dtrans_des = Path(cfg.OUTPUT_DIR) / 'deformable_transformer.py.backup'
main_src = 'main.py'
main_des = Path(cfg.OUTPUT_DIR) / 'main.py.backup'
os.system(f'cp {ddetr_src} {ddetr_des}')
os.system(f'cp {dtrans_src} {dtrans_des}')
os.system(f'cp {main_src} {main_des}')
return cfg
def main(cfg):
align = cfg.MODEL.BACKBONE_ALIGN or cfg.MODEL.SPACE_ALIGN or cfg.MODEL.CHANNEL_ALIGN or cfg.MODEL.INSTANCE_ALIGN
assert align == (cfg.DATASET.DA_MODE == 'uda')
print("git:\n {}\n".format(utils.get_sha()))
print(cfg)
if cfg.MODEL.FROZEN_WEIGHTS is not None:
assert cfg.MODEL.MASKS, "Frozen training is meant for segmentation only"
device = torch.device(cfg.DEVICE)
# fix the seed for reproducibility
seed = cfg.SEED + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
model, criterion, postprocessors = build_model(cfg)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
dataset_train = build_dataset(image_set='train', cfg=cfg)
dataset_val = build_dataset(image_set='val', cfg=cfg)
if cfg.DIST.DISTRIBUTED:
if cfg.CACHE_MODE:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if cfg.DATASET.DA_MODE == 'uda':
assert cfg.TRAIN.BATCH_SIZE % 2 == 0, f'cfg.TRAIN.BATCH_SIZE {cfg.TRAIN.BATCH_SIZE} should be a multiple of 2'
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, cfg.TRAIN.BATCH_SIZE//2, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=DAOD.collate_fn, num_workers=cfg.NUM_WORKERS,
pin_memory=True)
else:
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, cfg.TRAIN.BATCH_SIZE, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=cfg.NUM_WORKERS,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, cfg.TRAIN.BATCH_SIZE, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=cfg.NUM_WORKERS,
pin_memory=True)
# lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
for n, p in model_without_ddp.named_parameters():
print(n)
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, cfg.TRAIN.LR_BACKBONE_NAMES) and not match_name_keywords(n, cfg.TRAIN.LR_LINEAR_PROJ_NAMES) and p.requires_grad],
"lr": cfg.TRAIN.LR,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, cfg.TRAIN.LR_BACKBONE_NAMES) and p.requires_grad],
"lr": cfg.TRAIN.LR_BACKBONE,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, cfg.TRAIN.LR_LINEAR_PROJ_NAMES) and p.requires_grad],
"lr": cfg.TRAIN.LR * cfg.TRAIN.LR_LINEAR_PROJ_MULT,
}
]
if cfg.TRAIN.SGD:
optimizer = torch.optim.SGD(param_dicts, lr=cfg.TRAIN.LR, momentum=0.9,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
else:
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.TRAIN.LR,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.TRAIN.LR_DROP)
if cfg.DIST.DISTRIBUTED:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[cfg.DIST.GPU])
model_without_ddp = model.module
if cfg.DATASET.DATASET_FILE == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", cfg)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if cfg.MODEL.FROZEN_WEIGHTS is not None:
checkpoint = torch.load(cfg.MODEL.FROZEN_WEIGHTS, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(cfg.OUTPUT_DIR)
if cfg.RESUME: # [BUG] write after freezing cfgs
if cfg.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
cfg.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(cfg.RESUME, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if not cfg.EVAL and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance).
override_resumed_lr_drop = True
if override_resumed_lr_drop:
print('Warning: (hack) override_resumed_lr_drop is set to True, so cfg.TRAIN.LR_DROP would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = cfg.TRAIN.LR_DROP
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
cfg.START_EPOCH = checkpoint['epoch'] + 1
# check the resumed model
if not cfg.EVAL:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, cfg.OUTPUT_DIR
)
if cfg.EVAL:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, cfg.OUTPUT_DIR)
if cfg.OUTPUT_DIR:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
for epoch in range(cfg.START_EPOCH, cfg.TRAIN.EPOCHS):
if cfg.DIST.DISTRIBUTED:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, cfg.TRAIN.CLIP_MAX_NORM)
lr_scheduler.step()
if cfg.OUTPUT_DIR:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 5 epochs
if (epoch + 1) % cfg.TRAIN.LR_DROP == 0 or (epoch + 1) % 5 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'cfg': cfg,
}, checkpoint_path)
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, cfg.OUTPUT_DIR
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if cfg.OUTPUT_DIR and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Deformable DETR Detector')
parser.add_argument('--config_file', default='', type=str)
parser.add_argument("--opts", default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
cfg = setup(args)
main(cfg)