-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathC2.js
218 lines (196 loc) · 4.29 KB
/
C2.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
var C2 = versor.create({
metric:[1, 1, 1, -1],
types: [
{ name:"Vec2", bases:["e1", "e2"] },
{ name:"Biv2", bases:["e12"] },
{ name:"Pss", bases:["e1234"] },
{ name:"Rot", bases:["s", "e12"] },
{ name:"Pnt", bases:["e1", "e2", "e3", "e4"], dual:true },
{ name:"Par", bases:["e12", "e13", "e14", "e23", "e24", "e34"] },
{ name:"Dll", bases:["e1", "e2", "e4"], dual:true },
{ name:"Lin", bases:["e134", "e234", "e124"] },
{ name:"Cir", bases:["e123", "e234", "e124", "e134"] },
{ name:"Flp", bases:["e14", "e24", "e34"] },
{ name:"Drv", bases:["e14", "e24"] },
{ name:"Tnv", bases:["e13", "e23"] },
{ name:"Dil", bases:["s", "e34"] },
{ name:"Trs", bases:["s", "e14", "e24"] },
{ name:"Mot", bases:["s", "e12", "e14", "e24"] },
{ name:"Bst", bases:["s", "e12", "e13", "e14", "e23", "e24", "e34"] },
],
conformal:true
});
C2.Ori = C2.e3(1);
C2.Inf = C2.e4(1);
C2.Ro = {
point: function(x, y) {
return C2.Pnt(x, y, 1, (x*x+y*y)*0.5);
},
ipoint: function(x, y) {
return C2.Pnt(x, y, -1, (x*x+y*y)*0.5);
},
circle: function(x, y, r) {
var s = C2.Ro.point(x, y);
var r2 = r*r;
if(r > 0) s[3] -= 0.5*r2;
else s[3] += 0.5*r2;
return s;
},
size: function(a) {
var v1 = C2.Inf.ip(a);
var v2 = a.gp(a.involute()).gp(v1.gp(v1).inverse());
return a.isdual() ? -v2[0] : v2[0];
},
radius: function(a) {
var size = C2.Ro.size(a);
if(size < 0) return -Math.sqrt(-size);
else return Math.sqrt(size);
},
cen: function(a) {
var v = C2.Inf.ip(a);
return C2.Pnt(a.gp(C2.Inf).gp(a).div(v.gp(v).gp(-2)));
},
// squared distance
sqd: function(a, b) {
return -a.ip(b)[0]*2;
},
// distance
dst: function(a, b) {
return Math.sqrt(Math.abs(C2.Ro.sqd(a, b)));
},
car: function(a) {
return a.op(C2.Inf);
},
// split a point pair into its 2 points, returns an array
split: function(pp) {
var r = Math.sqrt( Math.abs( pp.ip(pp)[0] ))
var dlp = C2.e4(-1).ip(pp);
var bstA = C2.Bst(pp);
var bstB = C2.Bst(pp);
bstA[0] -= r;
bstB[0] += r;
var pA = C2.Pnt(bstA.div(dlp));
var pB = C2.Pnt(bstB.div(dlp));
return [pA, pB];
},
};
// normalize a point to have weight 1
C2.Ro.point.normalize = function(p) {
return p.gp(1/p[2]);
}
C2.Fl = {
line: function(p1, p2) {
return p1.op(p2).op(C2.Inf);
},
dir: function(a) {
return a.isdual() ?
C2.e4(-1).op(a) :
C2.e4(-1).ip(a);
},
loc: function(a, p) {
if(a.isdual()) return C2.Pnt(p.op(a).div(a));
else return C2.Pnt(p.ip(a).div(a));
}
};
var cosh = function(v) {
return (Math.exp(v) + Math.exp(-v))*0.5;
}
var sinh = function(v) {
return (Math.exp(v) - Math.exp(-v))*0.5;
}
C2.Op = {
trs: function(x, y) {
return C2.Trs(1, 0.5*x, 0.5*y);
},
bst: function(pp) {
var sz = pp.ip(pp)[0];
// Boost is hyperbolic, so use sinh and cosh instead of sin and cos
// to determine the component magnitudes
var cn, sn;
if(sz < 0) {
var norm = Math.sqrt(-sz);
cn = cosh(norm);
sn = -sinh(norm);
}
else if(sz > 0) {
var norm = Math.sqrt(sz);
cn = cosh(norm);
sn = -sinh(norm);
}
else {
cn = 1;
sn = -1;
}
var res = C2.Bst(pp.gp(sn));
res[0] = cn;
return res;
},
rj: function(a, b) {
return a.op(b).div(b);
},
pj: function(a, b) {
return a.ip(b).div(b);
}
};
C2.Ta = {
dir: function(el) {
return C2.Inf.ip(el).op(C2.Inf);
},
loc: function(el) {
return C2.Vec(el.div(C2.e4(-1).ip(el)));
}
}
C2.Dr = {
direction: function(x, y) {
return C2.Drv(x, y);
},
elem: function(d) {
return C2.Ori.ip(d.involute());
}
}
C2.dot = function(el) {
return el.ip(el);
}
C2.rdot = function(el) {
return el.ip(el.reverse());
}
C2.wt = function(el) {
return C2.dot(el, el)[0];
}
C2.rwt = function(el) {
return C2.rdot(el, el)[0];
}
C2.norm = function(el) {
var a = C2.rwt(el);
if(a < 0) return 0;
return Math.sqrt(a);
}
C2.rnorm = function(el) {
var a = C2.rwt(el);
if(a < 0) return -Math.sqrt(-a);
return Math.sqrt(a);
}
C2.mag = function(el) {
return Math.sqrt(Math.abs(C2.wt(el)));
}
C2.unit = function(el) {
var mag = C2.mag(el);
return el.gp(1/mag);
}
C2.runit = function(el) {
var mag = C2.rnorm(el);
return el.gp(1/mag);
}
C2.dual = function (el) {
return el.gp(C2.Pss(-1));
}
C2.undual = function (el) {
return el.gp(C2.Pss(1));
}
// Euclidean duals
C2.duale = function(el) {
return el.gp(C2.Biv2(-1));
}
C2.uduale = function(el) {
return el.gp(C2.Biv2(1));
}