Skip to content

Latest commit

 

History

History

segmentation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying PVT to Semantic Segmentation

Here, we take MMSegmentation v0.13.0 as an example, applying PVT to SemanticFPN.

For details see Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions.

If you use this code for a paper please cite:

PVTv1

@misc{wang2021pyramid,
      title={Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions}, 
      author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
      year={2021},
      eprint={2102.12122},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

PVTv2

@misc{wang2021pvtv2,
      title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
      author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
      year={2021},
      eprint={2106.13797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Usage

Install MMSegmentation.

Data preparation

Preparing ADE20K according to the guidelines in MMSegmentation.

Results and models

Method Backbone Pretrain Iters mIoU(code) mIoU(paper) Config Download
Semantic FPN PVT-Tiny ImageNet-1K 40K 36.6 35.7 config log & model
Semantic FPN PVT-Small ImageNet-1K 40K 41.9 39.8 config log & model
Semantic FPN PVT-Medium ImageNet-1K 40K 43.5 41.6 config log & model
Semantic FPN PVT-Large ImageNet-1K 40K 43.5 42.1 config log & model

Evaluation

To evaluate PVT-Small + Semantic FPN on a single node with 8 gpus run:

dist_test.sh configs/sem_fpn/PVT/fpn_pvt_s_ade20k_40k.py /path/to/checkpoint_file 8 --out results.pkl --eval mIoU

Training

To train PVT-Small + Semantic FPN on a single node with 8 gpus run:

dist_train.sh configs/sem_fpn/PVT/fpn_pvt_s_ade20k_40k.py 8

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.