|
30 | 30 | },
|
31 | 31 | {
|
32 | 32 | "cell_type": "code",
|
33 |
| - "execution_count": null, |
| 33 | + "execution_count": 1, |
34 | 34 | "id": "13048ad4",
|
35 | 35 | "metadata": {
|
36 | 36 | "tags": []
|
37 | 37 | },
|
38 |
| - "outputs": [], |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stderr", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "2024-04-23 15:14:17.606517: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", |
| 44 | + "2024-04-23 15:14:17.606541: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" |
| 45 | + ] |
| 46 | + } |
| 47 | + ], |
39 | 48 | "source": [
|
40 | 49 | "import os\n",
|
41 | 50 | "import sys\n",
|
42 | 51 | "from tqdm import tqdm\n",
|
43 | 52 | "sys.path.insert(0, '..') #sys allows for the .ipynb file to connect to the shared folder files\n",
|
44 | 53 | "from shared_scripts import Hindcast_Initialization, NSM_SCA\n",
|
| 54 | + "import warnings\n", |
| 55 | + "warnings.filterwarnings('ignore')\n", |
45 | 56 | "\n",
|
46 | 57 | "#Set working directories\n",
|
47 | 58 | "cwd = os.getcwd()\n",
|
|
86 | 97 | },
|
87 | 98 | {
|
88 | 99 | "cell_type": "code",
|
89 |
| - "execution_count": null, |
| 100 | + "execution_count": 2, |
90 | 101 | "id": "d82649fa-4b3e-4a34-b4ac-a5504298b827",
|
91 | 102 | "metadata": {},
|
92 |
| - "outputs": [], |
| 103 | + "outputs": [ |
| 104 | + { |
| 105 | + "name": "stdout", |
| 106 | + "output_type": "stream", |
| 107 | + "text": [ |
| 108 | + "Creating files for a historical simulation within 'N_Sierras', 'S_Sierras_High', 'S_Sierras_Low', 'Greater_Yellowstone', 'N_Co_Rockies', 'SW_Mont', 'SW_Co_Rockies', 'GBasin', 'N_Wasatch', 'N_Cascade', 'S_Wasatch', 'SW_Mtns', 'E_WA_N_Id_W_Mont', 'S_Wyoming', 'SE_Co_Rockies', 'Sawtooth', 'Ca_Coast', 'E_Or', 'N_Yellowstone', 'S_Cascade', 'Wa_Coast', 'Greater_Glacier', 'Or_Coast' regions for water year 2022\n" |
| 109 | + ] |
| 110 | + } |
| 111 | + ], |
93 | 112 | "source": [
|
94 |
| - "import os\n", |
95 |
| - "import sys\n", |
96 |
| - "from tqdm import tqdm\n", |
97 |
| - "sys.path.insert(0, '..') #sys allows for the .ipynb file to connect to the shared folder files\n", |
98 |
| - "from shared_scripts import Hindcast_Initialization, NSM_SCA\n", |
99 |
| - "import warnings\n", |
100 |
| - "warnings.filterwarnings('ignore')\n", |
101 |
| - "\n", |
102 | 113 | "#To create .netrc file\n",
|
103 | 114 | "#import earthaccess\n",
|
104 | 115 | "#earthaccess.login(persist=True)\n",
|
|
132 | 143 | },
|
133 | 144 | {
|
134 | 145 | "cell_type": "code",
|
135 |
| - "execution_count": null, |
| 146 | + "execution_count": 4, |
136 | 147 | "id": "c0062b00",
|
137 | 148 | "metadata": {
|
138 | 149 | "tags": []
|
139 | 150 | },
|
140 |
| - "outputs": [], |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "name": "stderr", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + " 0%| | 0/268 [00:00<?, ?it/s]" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "name": "stdout", |
| 161 | + "output_type": "stream", |
| 162 | + "text": [ |
| 163 | + "Getting California Data Exchange Center SWE data from sites\n", |
| 164 | + "Getting NRCS SNOTEL SWE data from sites\n", |
| 165 | + "Getting VIIRS fSCA data and calculating the spatial average NSDI\n", |
| 166 | + "VIIRS fSCA files found locally\n" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "name": "stderr", |
| 171 | + "output_type": "stream", |
| 172 | + "text": [ |
| 173 | + "100%|██████████| 694/694 [00:00<00:00, 2317.83it/s]\n", |
| 174 | + "100%|██████████| 694/694 [00:00<00:00, 2332.76it/s]\n", |
| 175 | + "100%|██████████| 2458/2458 [00:00<00:00, 7050.47it/s]\n", |
| 176 | + "100%|██████████| 15/15 [00:00<00:00, 6246.48it/s]\n", |
| 177 | + "100%|██████████| 6642/6642 [00:00<00:00, 8171.68it/s]\n", |
| 178 | + "100%|██████████| 1/1 [00:00<00:00, 2711.25it/s]\n", |
| 179 | + "100%|██████████| 8/8 [00:00<00:00, 6558.72it/s]\n", |
| 180 | + "100%|██████████| 6/6 [00:00<00:00, 6277.33it/s]\n", |
| 181 | + "100%|██████████| 10/10 [00:00<00:00, 6878.16it/s]\n", |
| 182 | + "100%|██████████| 6448/6448 [00:00<00:00, 8463.61it/s]\n", |
| 183 | + "100%|██████████| 5/5 [00:00<00:00, 5925.83it/s]\n", |
| 184 | + "100%|██████████| 3/3 [00:00<00:00, 4907.53it/s]\n", |
| 185 | + "100%|██████████| 13/13 [00:00<00:00, 7237.32it/s]\n", |
| 186 | + "100%|██████████| 12/12 [00:00<00:00, 6986.63it/s]\n", |
| 187 | + "100%|██████████| 3/3 [00:00<00:00, 5148.49it/s]\n", |
| 188 | + "100%|██████████| 1707/1707 [00:00<00:00, 8434.73it/s]\n", |
| 189 | + "100%|██████████| 12/12 [00:00<00:00, 7064.09it/s]\n", |
| 190 | + "100%|██████████| 1/1 [00:00<00:00, 3079.52it/s]\n", |
| 191 | + "100%|██████████| 25/25 [00:00<00:00, 7829.28it/s]\n", |
| 192 | + "100%|██████████| 16/16 [00:00<00:00, 7470.65it/s]\n", |
| 193 | + "100%|██████████| 7/7 [00:00<00:00, 6442.86it/s]\n", |
| 194 | + "100%|██████████| 9/9 [00:00<00:00, 6677.65it/s]\n", |
| 195 | + "100%|██████████| 9/9 [00:00<00:00, 6670.57it/s]\n", |
| 196 | + "100%|██████████| 3349/3349 [00:00<00:00, 8484.64it/s]\n" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "name": "stdout", |
| 201 | + "output_type": "stream", |
| 202 | + "text": [ |
| 203 | + "Regional data QA/QC\n" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "name": "stderr", |
| 208 | + "output_type": "stream", |
| 209 | + "text": [ |
| 210 | + "100%|██████████| 22/22 [00:00<00:00, 25.34it/s]\n", |
| 211 | + "100%|██████████| 22/22 [00:15<00:00, 1.38it/s]\n" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "name": "stdout", |
| 216 | + "output_type": "stream", |
| 217 | + "text": [ |
| 218 | + "Calculating mean SCA for each geometry in each region...\n" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "name": "stderr", |
| 223 | + "output_type": "stream", |
| 224 | + "text": [ |
| 225 | + "100%|██████████| 23/23 [00:34<00:00, 1.51s/it]\n", |
| 226 | + "2024-04-23 15:16:19.098846: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", |
| 227 | + "2024-04-23 15:16:19.098875: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", |
| 228 | + "2024-04-23 15:16:19.098893: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (compute004.ual-ciroh.cluster): /proc/driver/nvidia/version does not exist\n", |
| 229 | + "2024-04-23 15:16:19.099147: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", |
| 230 | + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "name": "stdout", |
| 235 | + "output_type": "stream", |
| 236 | + "text": [ |
| 237 | + "WARNING:tensorflow:5 out of the last 57 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f7105411820> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "name": "stderr", |
| 242 | + "output_type": "stream", |
| 243 | + "text": [ |
| 244 | + "5 out of the last 57 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f7105411820> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "name": "stdout", |
| 249 | + "output_type": "stream", |
| 250 | + "text": [ |
| 251 | + "WARNING:tensorflow:6 out of the last 58 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f716364cd30> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "name": "stderr", |
| 256 | + "output_type": "stream", |
| 257 | + "text": [ |
| 258 | + "6 out of the last 58 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f716364cd30> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", |
| 259 | + " 0%| | 1/268 [01:26<6:26:13, 86.79s/it]" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "name": "stdout", |
| 264 | + "output_type": "stream", |
| 265 | + "text": [ |
| 266 | + "No snow in region: Or_Coast\n", |
| 267 | + "Getting California Data Exchange Center SWE data from sites\n", |
| 268 | + "Getting NRCS SNOTEL SWE data from sites\n" |
| 269 | + ] |
| 270 | + } |
| 271 | + ], |
141 | 272 | "source": [
|
142 | 273 | "#run the model through all time (data acqusition already completed)\n",
|
143 | 274 | "model = 'Neural_Network'\n",
|
|
146 | 277 | "NewSim = True\n",
|
147 | 278 | "\n",
|
148 | 279 | "for day in tqdm(datelist):\n",
|
| 280 | + " print(day)\n", |
149 | 281 | " #connect interactive script to Wasatch Snow module\n",
|
150 | 282 | " Snow = NSM_SCA.NSM_SCA(day, threshold=threshold, Regions = Region_list, modelname = model, frequency = frequency, fSCA = fSCA, NewSim = NewSim)\n",
|
151 | 283 | " \n",
|
|
166 | 298 | " Snow.SWE_Predict(NewSim = NewSim, Corrections = False, fSCA = fSCA)\n"
|
167 | 299 | ]
|
168 | 300 | },
|
169 |
| - { |
170 |
| - "cell_type": "code", |
171 |
| - "execution_count": null, |
172 |
| - "id": "7dafffb6", |
173 |
| - "metadata": {}, |
174 |
| - "outputs": [], |
175 |
| - "source": [ |
176 |
| - "#Go through snotel/CDEC sites and remove ones that are no longer active..." |
177 |
| - ] |
178 |
| - }, |
179 |
| - { |
180 |
| - "cell_type": "code", |
181 |
| - "execution_count": null, |
182 |
| - "id": "59712933", |
183 |
| - "metadata": {}, |
184 |
| - "outputs": [], |
185 |
| - "source": [] |
186 |
| - }, |
187 | 301 | {
|
188 | 302 | "cell_type": "markdown",
|
189 | 303 | "id": "1e2290d9",
|
|
198 | 312 | },
|
199 | 313 | {
|
200 | 314 | "cell_type": "code",
|
201 |
| - "execution_count": null, |
202 |
| - "id": "95050821", |
203 |
| - "metadata": {}, |
204 |
| - "outputs": [], |
205 |
| - "source": [] |
206 |
| - }, |
207 |
| - { |
208 |
| - "cell_type": "code", |
209 |
| - "execution_count": null, |
| 315 | + "execution_count": 3, |
210 | 316 | "id": "0b64a8b9-47ac-45ef-885f-98339b0983ad",
|
211 | 317 | "metadata": {
|
212 | 318 | "tags": []
|
213 | 319 | },
|
214 |
| - "outputs": [], |
| 320 | + "outputs": [ |
| 321 | + { |
| 322 | + "name": "stderr", |
| 323 | + "output_type": "stream", |
| 324 | + "text": [ |
| 325 | + " 0% | |\r" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "name": "stdout", |
| 330 | + "output_type": "stream", |
| 331 | + "text": [ |
| 332 | + "['submission_format.h5', '2019_predictions.h5', '2022_predictions.h5', 'RegionWYTest.h5']\n", |
| 333 | + "Pushing files to AWS\n" |
| 334 | + ] |
| 335 | + }, |
| 336 | + { |
| 337 | + "name": "stderr", |
| 338 | + "output_type": "stream", |
| 339 | + "text": [ |
| 340 | + "100% |########################################################################|\n" |
| 341 | + ] |
| 342 | + } |
| 343 | + ], |
215 | 344 | "source": [
|
216 | 345 | "modelname= 'Neural_Network'\n",
|
217 | 346 | "folderpath = 'Predictions/Hold_Out_Year/Daily/fSCA_True/'\n",
|
|
0 commit comments