You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In test_zeroshot.py file, the code for the final test accuracy looks like this:
` i_features.append(concat_all_gather(image_features))
sim_logits.append(concat_all_gather(similarity))
labels.append(concat_all_gather(class_id))
if dist.get_rank() == 0:
## half-classes evaluation
sim, la = sim_logits[0], labels[0]
vid_feat = i_features[0]
for i in range(1, len(sim_logits)):
sim = torch.cat((sim, sim_logits[i]), 0)
la = torch.cat((la, labels[i]), 0)
vid_feat = torch.cat((vid_feat, i_features[i]), 0)
In test_zeroshot.py file, the code for the final test accuracy looks like this:
` i_features.append(concat_all_gather(image_features))
sim_logits.append(concat_all_gather(similarity))
labels.append(concat_all_gather(class_id))
if dist.get_rank() == 0:
## half-classes evaluation
sim, la = sim_logits[0], labels[0]
vid_feat = i_features[0]
for i in range(1, len(sim_logits)):
sim = torch.cat((sim, sim_logits[i]), 0)
la = torch.cat((la, labels[i]), 0)
vid_feat = torch.cat((vid_feat, i_features[i]), 0)
The accuracy of the calculation here is the original image feature, regardless of video_header.
The text was updated successfully, but these errors were encountered: