forked from LizhenWangT/FaceVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracking_offline.py
191 lines (160 loc) · 9.75 KB
/
tracking_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import cv2
import os
import numpy as np
import time
import torch
import argparse
from model import get_faceverse
import model.losses as losses
from data_reader import OfflineReader
from util_functions import get_length, ply_from_array_color
def init_optim_with_id(args, faceverse_model):
rigid_optimizer = torch.optim.Adam([faceverse_model.get_rot_tensor(),
faceverse_model.get_trans_tensor(),
faceverse_model.get_id_tensor(),
faceverse_model.get_exp_tensor()],
lr=args.rf_lr)
nonrigid_optimizer = torch.optim.Adam(
[faceverse_model.get_id_tensor(), faceverse_model.get_exp_tensor(),
faceverse_model.get_gamma_tensor(), faceverse_model.get_tex_tensor(),
faceverse_model.get_rot_tensor(), faceverse_model.get_trans_tensor()], lr=args.nrf_lr)
return rigid_optimizer, nonrigid_optimizer
def tracking(args, device):
faceverse_model, faceverse_dict = get_faceverse(version=args.version, batch_size=1, focal=1315, img_size=args.tar_size, device=device)
lm_weights = losses.get_lm_weights(device)
offreader = OfflineReader(args.input)
print(args.input, 'FPS:', offreader.fps)
os.makedirs(args.res_folder, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out_video = cv2.VideoWriter(os.path.join(args.res_folder, 'faceverse_tracking.mp4'), fourcc, offreader.fps, (args.tar_size * 3, args.tar_size))
frame_ind = 0
while True:
# load data
face_detected, frame, lms, frame_num = offreader.get_data()
if not face_detected:
if frame:
out_video.release()
exit()
else:
continue
# init crop parameters and optimizer
if frame_ind == 0:
border = 500
half_length = int(get_length(lms))
crop_center = lms[29].copy() + border
print('First frame:', half_length, crop_center)
rigid_optimizer, nonrigid_optimizer = init_optim_with_id(args, faceverse_model)
frame_b = cv2.copyMakeBorder(frame, border, border, border, border, cv2.BORDER_CONSTANT, value=0)
align = cv2.resize(frame_b[crop_center[1] - half_length:crop_center[1] + half_length, crop_center[0] - half_length:crop_center[0] + half_length],
(args.tar_size, args.tar_size), cv2.INTER_AREA)
resized_lms = (lms - (crop_center - half_length - border)[np.newaxis, :]) / half_length / 2 * args.tar_size
resized_lms = resized_lms.astype(np.int64)
lms = torch.from_numpy(resized_lms[np.newaxis, :, :]).type(torch.float32).to(device)
img_tensor = torch.from_numpy(align[np.newaxis, ...]).type(torch.float32).to(device)
if frame_ind == 0:
num_iters_rf = args.first_rf_iters
num_iters_nrf = args.first_nrf_iters
else:
num_iters_rf = args.rest_rf_iters
num_iters_nrf = args.rest_nrf_iters
# fitting using only landmarks
for i in range(num_iters_rf):
rigid_optimizer.zero_grad()
pred_dict = faceverse_model(faceverse_model.get_packed_tensors(), render=False, texture=False)
lm_loss_val = losses.lm_loss(pred_dict['lms_proj'], lms, lm_weights, img_size=args.tar_size)
exp_reg_loss = losses.get_l2(faceverse_model.get_exp_tensor())
id_reg_loss = losses.get_l2(faceverse_model.get_id_tensor())
total_loss = args.lm_loss_w * lm_loss_val + id_reg_loss*args.id_reg_w + exp_reg_loss*args.exp_reg_w
total_loss.backward()
rigid_optimizer.step()
# fitting with differentiable rendering
for i in range(num_iters_nrf):
nonrigid_optimizer.zero_grad()
pred_dict = faceverse_model(faceverse_model.get_packed_tensors(), render=True, texture=True)
rendered_img = pred_dict['rendered_img']
lms_proj = pred_dict['lms_proj']
face_texture = pred_dict['face_texture']
mask = rendered_img[:, :, :, 3].detach()
lm_loss_val = losses.lm_loss(lms_proj, lms, lm_weights,img_size=args.tar_size)
photo_loss_val = losses.photo_loss(rendered_img[:, :, :, :3], img_tensor, mask > 0)
exp_reg_loss = losses.get_l2(faceverse_model.get_exp_tensor())
id_reg_loss = losses.get_l2(faceverse_model.get_id_tensor())
tex_reg_loss = losses.get_l2(faceverse_model.get_tex_tensor())
tex_loss_val = losses.reflectance_loss(face_texture, faceverse_model.get_skinmask())
loss = lm_loss_val*args.lm_loss_w + id_reg_loss*args.id_reg_w + exp_reg_loss*args.exp_reg_w + \
tex_reg_loss*args.tex_reg_w + tex_loss_val*args.tex_w + photo_loss_val*args.rgb_loss_w
loss.backward()
nonrigid_optimizer.step()
# save data
with torch.no_grad():
pred_dict = faceverse_model(faceverse_model.get_packed_tensors(), render=True, texture=True)
rendered_img_c = pred_dict['rendered_img']
rendered_img_c = np.clip(rendered_img_c.cpu().squeeze().numpy(), 0, 255)
pred_dict = faceverse_model(faceverse_model.get_packed_tensors(), render=True, texture=False)
rendered_img_r = pred_dict['rendered_img']
rendered_img_r = np.clip(rendered_img_r.cpu().squeeze().numpy(), 0, 255)
mask_img_c = (rendered_img_c[:, :, 3:4] > 0).astype(np.uint8)
drive_img_c = rendered_img_c[:, :, :3].astype(np.uint8) * mask_img_c + align * (1 - mask_img_c)
mask_img_r = (rendered_img_r[:, :, 3:4] > 0).astype(np.uint8)
drive_img_r = rendered_img_r[:, :, :3].astype(np.uint8) * mask_img_r + align * (1 - mask_img_r)
drive_img = np.concatenate([align, drive_img_c, drive_img_r], axis=1)
if frame_ind == 0:
start_t = time.time()
frame_ind += 1
out_video.write(drive_img[:, :, ::-1])
#cv2.imwrite( os.path.join(args.res_folder, f'{str(frame_ind).zfill(4)}.png'), drive_img[:, :, ::-1])
print(f'Speed:{(time.time() - start_t) / frame_ind:.4f}, {frame_ind:4} / {offreader.num_frames:4}, {total_loss.item():.4f}')
if args.save_ply:
vertices = pred_dict['vs'].detach().cpu().squeeze().numpy()
colors = pred_dict['face_texture'].detach().cpu().squeeze().numpy()
colors = np.clip(colors, 0, 255).astype(np.uint8)
output_ply = os.path.join(args.res_folder, f'{str(frame_ind).zfill(4)}.ply')
ply_from_array_color(vertices, colors, faceverse_dict['tri'], output_ply)
if args.save_coeff:
coeffs = faceverse_model.get_packed_tensors().detach().clone().cpu().numpy()
np.save(os.path.join(args.res_folder, f'{str(frame_ind).zfill(4)}.npy'), coeffs)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="FaceVerse online tracker")
parser.add_argument('--input', type=str, required=True,
help='input video path')
parser.add_argument('--res_folder', type=str, required=True,
help='output directory')
parser.add_argument('--save_ply', action="store_true",
help='save the output ply or not')
parser.add_argument('--save_coeff', action="store_true",
help='save the output coeff or not')
parser.add_argument('--version', type=int, default=1,
help='FaceVerse model version.')
parser.add_argument('--tar_size', type=int, default=512,
help='size for rendering window. We use a square window.')
parser.add_argument('--padding_ratio', type=float, default=1.0,
help='enlarge the face detection bbox by a margin.')
parser.add_argument('--recon_model', type=str, default='faceverse',
help='choose a 3dmm model, default: faceverse')
parser.add_argument('--first_rf_iters', type=int, default=500,
help='iteration number of landmark fitting for the first frame in video fitting.')
parser.add_argument('--first_nrf_iters', type=int, default=300,
help='iteration number of differentiable fitting for the first frame in video fitting.')
parser.add_argument('--rest_rf_iters', type=int, default=50,
help='iteration number of landmark fitting for the remaining frames in video fitting.')
parser.add_argument('--rest_nrf_iters', type=int, default=30,
help='iteration number of differentiable fitting for the remaining frames in video fitting.')
parser.add_argument('--rf_lr', type=float, default=1e-2,
help='learning rate for landmark fitting')
parser.add_argument('--nrf_lr', type=float, default=1e-2,
help='learning rate for differentiable fitting')
parser.add_argument('--lm_loss_w', type=float, default=3e3,
help='weight for landmark loss')
parser.add_argument('--rgb_loss_w', type=float, default=1.6,
help='weight for rgb loss')
parser.add_argument('--id_reg_w', type=float, default=1e-3,
help='weight for id coefficient regularizer')
parser.add_argument('--exp_reg_w', type=float, default=1.5e-4,
help='weight for expression coefficient regularizer')
parser.add_argument('--tex_reg_w', type=float, default=3e-4,
help='weight for texture coefficient regularizer')
parser.add_argument('--tex_w', type=float, default=1,
help='weight for texture reflectance loss.')
args = parser.parse_args()
device = 'cuda'
tracking(args, device)