-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSD_detector.m
237 lines (226 loc) · 8.09 KB
/
SD_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
function [X_hat]=SD_detector(y,H,nT)
% Input parameters
% y : received signal, nRx1
% H : Channel matrix, nRxnT
% nT : number of Tx antennas
% Output parameter
% X_hat : estimated signal, nTx1
%MIMO-OFDM Wireless Communications with MATLAB¢ç Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd
global x_list; % candidate symbols in real constellations
global x_now; % temporary x_vector elements
global x_hat; % inv(H)*y
global x_sliced; % sliced x_hat
global x_pre; % x vectors obtained in the previous stage
global real_constellation; % real constellation
global R; % R in the QR decomposition
global radius_squared; % radius^2
global x_metric; % ML metrics of previous stage candidates
global len; % nT*2
QAM_table2 = [-3-3j, -3-j, -3+3j, -3+j, -1-3j, -1-j, -1+3j, -1+j,3-3j, ...
3-j, 3+3j, 3+j, 1-3j, 1-j, 1+3j, 1+j]/sqrt(10); % 16-QAM
real_constellation = [-3 -1 1 3]/sqrt(10);
y =[real(y); imag(y)]; % y : complex vector -> real vector
H =[real(H) -(imag(H)) ; imag(H) real(H)];
% H : complex vector -> real vector
len = nT*2; % complex -> real
x_list = zeros(len,4); % 4 : real constellation length, 16-QAM
x_now = zeros(len,1); x_hat = zeros(len,1); x_pre = zeros(len,1); x_metric = 0;
[Q,R] = qr(H); % nR x nT QR decomposition
x_hat = inv(H)*y; % zero forcing equalization
x_sliced = QAM16_real_slicer(x_hat,len)'; % slicing
radius_squared = norm(R*(x_sliced-x_hat))^2; % Radious^2
transition = 1;
% meaning of transition
% 0 : radius*2, 1~len : stage number
% len+1 : compare two vectors in terms of norm values
% len+2 : finish
flag = 1;
% transition tracing 0 : stage index increases by +1
%1 : stage index decreases by -1
%2 : 1->len+2 or len+1->1
while (transition<len+2)
if transition==0 % radius_squared*2
[flag,transition,radius_squared,x_list]= radius_control(radius_squared,transition);
elseif transition <= len
[flag,transition] = stage_processing(flag,transition);
elseif transition == len+1 %
[flag,transition] = compare_vector_norm(transition);
end
end
ML = x_pre;
for i=1:len/2
X_hat(i) = ML(i)+j*ML(i+len/2);
end
function [flag,transition] = stage_processing(flag,transition)
% Input parameters
% flag : previous stage index
% flag = 0 : stage index decreased -> x_now empty -> new x_now
% flag = 1 : stage index decreased -> new x_now
% flag = 2 : previous stage index =len+1 -> If R>R'? start from the first stage
% transition : stage number
% Output parameters
% flag : stage number is calculated from flag
% transition : next stage number, 0 : R*2, 1: next stage, len+2: finish
global x_list x_metric x_now x_hat real_constellation R radius_squared x_sliced;
global x_list;
global x_metric;
global x_now;
global x_hat;
global real_constellation;
global R;
global radius_squared;
global x_sliced;
stage_index = length(R(1,:))-(transition-1);
if flag == 2 % previous stage=len+1 : recalculate radius R'
radius_squared = norm(R*(x_sliced-x_hat))^2;
end
if flag ~= 0 % previous stage=len+1 or 0
-> upper and lower bound calculation, x_list(stage_index,:)
[bound_lower bound_upper] = bound(transition);
for i =1:4 % search for a candidate in x_now(stage_index),
% 4=size(real_constellation), 16-QAM assumed
if bound_lower <= real_constellation(i) && real_constellation(i) <= bound_upper
list_len = list_length(x_list(stage_index,:));
x_list(stage_index,list_len+1) = real_constellation(i);
end
end
end
list_len = list_length(x_list(stage_index,:));
if list_len == 0 % no candidate in x_now
if x_metric == 0 || transition ~= 1
% transition >=2 ? if no candidate ? decrease stage index
flag = 0;
transition = transition-1;
elseif x_metric ~= 0 && transition == 1
% above two conditions are met? ML solution found
transition = length(R(1,:))+2; % finish stage
end
else % candidate exist in x_now ? increase stage index
flag = 1;
transition = transition+1;
x_now(stage_index) = x_list(stage_index,1);
x_list(stage_index,:) = [x_list(stage_index,[2:4]) 0];
end
function [bound_lower bound_upper]=bound(transition)
% Input parameters
% R : [Q R] = qr(H)
% radius_squared : R^2
% transition : stage number
% x_hat : inv(H)*y
% x_now : slicing x_hat
% Output parameters
% bound_lower : bound lower
% bound_upper : bound upper
global R radius_squared x_now x_hat;
len = length(x_hat);
temp_sqrt = radius_squared;
temp_k=0;
for i=1:1:transition-1
temp_abs=0;
for k=1:1:i
index_1 = len-(i-1);
index_2 = index_1+ (k-1);
temp_k = R(index_1,index_2)*(x_now(index_2)-x_hat(index_2));
temp_abs=temp_abs+temp_k;
end
temp_sqrt = temp_sqrt - abs(temp_abs)^2;
end
temp_sqrt = sqrt(temp_sqrt);
temp_no_sqrt = 0;
index_1 = len-(transition-1);
index_2 = index_1;
for i=1:1:transition-1
index_2 = index_2+1;
temp_i = R(index_1,index_2)*(x_now(index_2)-x_hat(index_2));
temp_no_sqrt = temp_no_sqrt - temp_i;
end
temp_lower = -temp_sqrt + temp_no_sqrt;
temp_upper = temp_sqrt + temp_no_sqrt;
index = len-(transition-1);
bound_lower = temp_lower/R(index,index) + x_hat(index);
bound_upper = temp_upper/R(index,index) + x_hat(index);
bound_upper = fix(bound_upper*sqrt(10))/sqrt(10);
bound_lower = ceil(bound_lower*sqrt(10))/sqrt(10);
function [len]=list_length(list)
% Input parameter
% list : vector type
% Output parameter
% len : index number
len = 0;
for i=1:4
if list(i)==0, break; else len = len+1; end
end
function [flag,transition,radius_squared,x_list]
=radius_control(radius_squared,transition)
% Input parameters
% radius_squared : current radius
% transition : current stage number
% Output parameters
% radius_squared : doubled radius
% transition : next stage number
% flag : next stage number is calculated from flag
global len;
radius_squared = radius_squared*2;
transition = transition+1;
flag = 1;
x_list(len,:)=zeros(1,4);
function [check]=vector_comparison(vector_1,vector_2)
% check if the two vectors are the same
% Input parameters
% pre_x : vector 1
% now_x : vector 2
% Output parameters
% check : 1-> same vectors, 0-> different vectors
check = 0;
len1 = length(vector_1); len2 = length(vector_2);
if len1 ~= len2
error('vector size is different');
end
for column_num = 1:len1
if vector_1(column_num,1) == vector_2(column_num,1)
check = check + 1;
end
end
if check == len1, check = 1;
else check = 0;
end
function [flag,transition]=compare_vector_norm(transition)
% stage index increased(flag = 1) : recalculate x_list(index,:)
% stage index decreased(flag = 0) : in the previous stage, no candidate x_now in x_list
% Input parameters
% flag : previous stage
% transition : stage number
% Output parameters
% flag : next stage number is calculated from flag
% transition : next stage number
global x_list x_pre x_metric x_now x_hat R radius_squared x_sliced len;
vector_identity = vector_comparison(x_pre,x_now);
% check if the new candidate is among the ones we found before
if vector_identity == 1
% if 1 ? ML solution found
len_total = 0;
for i=1:len % if the vector is unique ? len_total = 0
len_total = len_total + list_length(x_list(i,:));
end
if len_total == 0 % ML solution vector found
transition = len+2; % finish
flag = 1;
else % more than one candidates
transition = transition-1; % go back to the previous stage
flag =0;
end
else % if 0 ? new candidate vector is different from the previous candidate vector and norm is smaller ? restart
x_sliced_temp = x_now;
metric_temp = norm(R*(x_sliced_temp-x_hat))^2;
if metric_temp <= radius_squared
% new candidate vector has smaller metric ? restart
x_pre = x_now; x_metric = metric_temp;
x_sliced = x_now; transition = 1; % restart
flag = 2; x_list=zeros(len,4); % initialization
x_now=zeros(len,1); % initialization
else % new candidate vector has a larger ML metric
transition = transition-1; % go back to the previous stage
flag =0;
end
end