-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathchannel_estimation.m
87 lines (85 loc) · 4.54 KB
/
channel_estimation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
%channel_estimation.m
% for LS/DFT Channel Estimation with linear/spline interpolation
%MIMO-OFDM Wireless Communications with MATLAB¢ç Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd
clear all; close all; figure(1), clf, figure(2), clf
Nfft=32; Ng=Nfft/8; Nofdm=Nfft+Ng; Nsym=100;
Nps=4; Np=Nfft/Nps; Nd=Nfft-Np; % Pilot spacing, Numbers of pilots and data per OFDM symbol
Nbps=4; M=2^Nbps; % Number of bits per (modulated) symbol
mod_object = modem.qammod('M',M, 'SymbolOrder','gray');
demod_object = modem.qamdemod('M',M, 'SymbolOrder','gray');
Es=1; A=sqrt(3/2/(M-1)*Es); % Signal energy and QAM normalization factor
%fs = 10e6; ts = 1/fs; % Sampling frequency and Sampling period
SNRs = [30]; sq2=sqrt(2);
for i=1:length(SNRs)
SNR = SNRs(i);
rand('seed',1); randn('seed',1);
MSE = zeros(1,6); nose = 0;
for nsym=1:Nsym
Xp = 2*(randn(1,Np)>0)-1; % Pilot sequence generation
%Data = ((2*(randn(1,Nd)>0)-1) + j*(2*(randn(1,Nd)>0)-1))/sq2; % QPSK modulation
msgint=randint(1,Nfft-Np,M); % bit generation
Data = modulate(mod_object,msgint)*A;
%Data = modulate(mod_object, msgint); Data = modnorm(Data,'avpow',1)*Data; % normalization
ip = 0; pilot_loc = [];
for k=1:Nfft
if mod(k,Nps)==1
X(k) = Xp(floor(k/Nps)+1); pilot_loc = [pilot_loc k]; ip = ip+1;
else X(k) = Data(k-ip);
end
end
x = ifft(X,Nfft); % IFFT
xt = [x(Nfft-Ng+1:Nfft) x]; % Add CP
h = [(randn+j*randn) (randn+j*randn)/2]; % generates a (2-tap) channel
H = fft(h,Nfft); channel_length = length(h); % True channel and its time-domain length
H_power_dB = 10*log10(abs(H.*conj(H))); % True channel power in dB
y_channel = conv(xt, h); % Channel path (convolution)
sig_pow = mean(y_channel.*conj(y_channel));
%y_aw(1,1:Nofdm) = y(1,1:Nofdm) + ...
% sqrt((10.^(-SNR/10))*sig_pow/2)*(randn(1,Nofdm)+j*randn(1,Nofdm)); % Add noise(AWGN)
yt = awgn(y_channel,SNR,'measured');
y = yt(Ng+1:Nofdm); % Remove CP
Y = fft(y); % FFT
for m=1:3
if m==1, H_est = LS_CE(Y,Xp,pilot_loc,Nfft,Nps,'linear'); method='LS-linear'; % LS estimation with linear interpolation
elseif m==2, H_est = LS_CE(Y,Xp,pilot_loc,Nfft,Nps,'spline'); method='LS-spline'; % LS estimation with spline interpolation
else H_est = MMSE_CE(Y,Xp,pilot_loc,Nfft,Nps,h,SNR); method='MMSE'; % MMSE estimation
end
H_est_power_dB = 10*log10(abs(H_est.*conj(H_est)));
h_est = ifft(H_est); h_DFT = h_est(1:channel_length);
H_DFT = fft(h_DFT,Nfft); % DFT-based channel estimation
H_DFT_power_dB = 10*log10(abs(H_DFT.*conj(H_DFT)));
if nsym==1
figure(1), subplot(319+2*m), plot(H_power_dB,'b','linewidth',1); grid on; hold on;
plot(H_est_power_dB,'r:+','Markersize',4,'linewidth',1); axis([0 32 -6 10])
title(method); xlabel('Subcarrier Index'); ylabel('Power[dB]');
legend('True Channel',method,4); set(gca,'fontsize',9)
subplot(320+2*m), plot(H_power_dB,'b','linewidth',1); grid on; hold on;
plot(H_DFT_power_dB,'r:+','Markersize',4,'linewidth',1); axis([0 32 -6 10])
title([method ' with DFT']); xlabel('Subcarrier Index'); ylabel('Power[dB]');
legend('True Channel',[method ' with DFT'],4); set(gca,'fontsize',9)
end
MSE(m) = MSE(m) + (H-H_est)*(H-H_est)';
MSE(m+3) = MSE(m+3) + (H-H_DFT)*(H-H_DFT)';
end
Y_eq = Y./H_est;
if nsym>=Nsym-10
figure(2), subplot(221), plot(Y,'.','Markersize',5), axis([-1.5 1.5 -1.5 1.5])
axis('equal'), set(gca,'fontsize',9), hold on,
subplot(222), plot(Y_eq,'.','Markersize',5), axis([-1.5 1.5 -1.5 1.5])
axis('equal'), set(gca,'fontsize',9), hold on,
end
ip = 0;
for k=1:Nfft
if mod(k,Nps)==1, ip=ip+1; else Data_extracted(k-ip)=Y_eq(k); end
end
msg_detected = demodulate(demod_object,Data_extracted/A);
nose = nose + sum(msg_detected~=msgint);
end
MSEs(i,:) = MSE/(Nfft*Nsym);
end
Number_of_symbol_errors=nose
figure(3), clf, semilogy(SNRs',MSEs(:,1),'-x', SNRs',MSEs(:,3),'-o')
legend('LS-linear','MMSE')
fprintf('MSE of LS-linear/LS-spline/MMSE Channel Estimation = %6.4e/%6.4e/%6.4e\n',MSEs(end,1:3));
fprintf('MSE of LS-linear/LS-spline/MMSE Channel Estimation with DFT = %6.4e/%6.4e/%6.4e\n',MSEs(end,4:6));