Skip to content

Latest commit

 

History

History
59 lines (45 loc) · 3.86 KB

File metadata and controls

59 lines (45 loc) · 3.86 KB

NMT-SMT Hybrid Systems

在 NMT 還沒普及之前,neural models 通常作為 SMT 的特徵之一來訓練,而隨著 NMT 的發展,雖然 NMT 的表現已經比 SMT 還要優秀,但 SMT 依然能有部分的內容能與 NMT 互補:

所以融合 NMT-SMT 的系統也是一個研究方向,我們可以將融合方法分成 2 類:

SMT-supported NMT

第一種方法沒有使用完整的 SMT,只借用了其 ideas 或 components 來解決 NMT 的一些問題,例如使用 NMT attention 模型的 soft alignment weights 來將 SMT 的 symbolic SMT-style lexical translation tables 引入到 NMT 的 decoder 當中

  • Lexicons and minimum risk training for neural machine translation
  • Improved neural machine translation with SMT features
  • Incorporating discrete translation lexicons into neural machine translation
  • Bridging neural machine translation and bilingual dictionaries
  • Neural machine translation with external phrase memory

或是將 SMT 的 word alignment models 概念 (e.g., fertility, relative distortion) 應用到 NMT attention model 當中

  • The mathematics of statistical machine translation
  • HMM-based word alignment in statistical translation

System Combination

第二種方法是將分開訓練完成的 SMT 和 NMT 系統合併起來,常見的合併方法是 rescoringreranking,但可能因為 NMT 較為強大,所以效果較差:

  • Syntactically guided neural machine translation
  • Neural lattice search for domain adaptation in machine translation
  • Neural reranking improves subjective quality of machine translation
  • Near human-level performance in grammatical error correction with hybrid machine translation
  • Deeper machine translation and evaluation for German
  • A smorgasbord of features to combine phrase-based and neural machine translation
  • Improving neural machine translation through phrase-based forced decoding

Others

另外還有許多的方法來混合使用 NMT-SMT:

  1. Finite state transducer: 基於 based loose combinationedit distance loss 來合併 NMT-SMT
    • The edit distance transducer in action
  2. The minimum Bayes risk (MBR) 利用 n-grams 將 NMT decoder 導向至 SMT 的 search space
    • MBR-based combination of NMT and SMT has been used in WMT evaluation systems and in the industry
    • Neural machine translation by minimising the Bayes-risk with respect to syntactic translation lattices
  3. 將 SMT 的結果作為 post-processing NMT system 的輸入,或是顛倒使用
    • Pre-translation for neural machine translation
    • Neural system combination for machine translation
    • Neural pre-translation for hybrid machine translation
  4. 利用 SMT 的 word recommendations 來和 NMT 一起訓練,並且使用 gating function 來動態分配 NMT 和 SMT 之間的權重
    • Neural machine translation advised by statistical machine translation
    • Incorporating statistical machine translation word knowledge into neural machine translation
  5. AMU-UEDIN submission (WMT16) 使用 SMT 為主,加入 NMT 作為 feature 來實現 phrase-based MT
    • The AMU-UEDIN submission to the WMT16 news translation task: Attention-based NMT models as feature functions in phrase-based SMT
  6. 使用 NMT 來翻譯大部份的句子,而在 post-processing 使用 SMT 來翻譯 technical terms
    • Translation of patent sentences with a large vocabulary of technical terms using neural machine translation
  7. Hybrid search algorithm: 在 NMT 的 decoder 中使用 SMT 提供的片語來擴大假設句子的數量 (hypotheses)
    • Neural machine translation leveraging phrase-based models in a hybrid search
  8. 使用 SMT 作為 unsupervised NMT 的 regularizer
    • Unsupervised neural machine translation with SMT as posterior regularization