在 NMT 還沒普及之前,neural models
通常作為 SMT 的特徵之一來訓練,而隨著 NMT 的發展,雖然 NMT 的表現已經比 SMT 還要優秀,但 SMT 依然能有部分的內容能與 NMT 互補:
所以融合 NMT-SMT 的系統也是一個研究方向,我們可以將融合方法分成 2 類:
第一種方法沒有使用完整的 SMT,只借用了其 ideas 或 components 來解決 NMT 的一些問題,例如使用 NMT attention 模型的 soft alignment weights
來將 SMT 的 symbolic SMT-style lexical translation tables
引入到 NMT 的 decoder 當中
Lexicons and minimum risk training for neural machine translation
Improved neural machine translation with SMT features
Incorporating discrete translation lexicons into neural machine translation
Bridging neural machine translation and bilingual dictionaries
Neural machine translation with external phrase memory
或是將 SMT 的 word alignment models
概念 (e.g., fertility, relative distortion) 應用到 NMT attention model 當中
The mathematics of statistical machine translation
HMM-based word alignment in statistical translation
第二種方法是將分開訓練完成的 SMT 和 NMT 系統合併起來,常見的合併方法是 rescoring
和 reranking
,但可能因為 NMT 較為強大,所以效果較差:
Syntactically guided neural machine translation
Neural lattice search for domain adaptation in machine translation
Neural reranking improves subjective quality of machine translation
Near human-level performance in grammatical error correction with hybrid machine translation
Deeper machine translation and evaluation for German
A smorgasbord of features to combine phrase-based and neural machine translation
Improving neural machine translation through phrase-based forced decoding
另外還有許多的方法來混合使用 NMT-SMT:
Finite state transducer
: 基於based loose combination
和edit distance loss
來合併 NMT-SMTThe edit distance transducer in action
The minimum Bayes risk (MBR)
利用 n-grams 將 NMT decoder 導向至 SMT 的 search spaceMBR-based combination of NMT and SMT
has been used in WMT evaluation systems and in the industryNeural machine translation by minimising the Bayes-risk with respect to syntactic translation lattices
- 將 SMT 的結果作為 post-processing NMT system 的輸入,或是顛倒使用
Pre-translation for neural machine translation
Neural system combination for machine translation
Neural pre-translation for hybrid machine translation
- 利用 SMT 的
word recommendations
來和 NMT 一起訓練,並且使用gating function
來動態分配 NMT 和 SMT 之間的權重Neural machine translation advised by statistical machine translation
Incorporating statistical machine translation word knowledge into neural machine translation
AMU-UEDIN submission
(WMT16) 使用 SMT 為主,加入 NMT 作為 feature 來實現phrase-based MT
The AMU-UEDIN submission to the WMT16 news translation task: Attention-based NMT models as feature functions in phrase-based SMT
- 使用 NMT 來翻譯大部份的句子,而在
post-processing
使用 SMT 來翻譯technical terms
Translation of patent sentences with a large vocabulary of technical terms using neural machine translation
Hybrid search algorithm
: 在 NMT 的 decoder 中使用 SMT 提供的片語來擴大假設句子的數量 (hypotheses)Neural machine translation leveraging phrase-based models in a hybrid search
- 使用 SMT 作為
unsupervised NMT
的 regularizerUnsupervised neural machine translation with SMT as posterior regularization